Fast Online Segmentation of Activities from Partial Trajectories

TitleFast Online Segmentation of Activities from Partial Trajectories
Publication TypeConference Proceedings
Year of Conference2019
AuthorsIqbal, T., S. Li, C. Fourie, B. Hayes, and J. A. Shah
Conference NameInternational Conference on Robotics and Automation (ICRA)
Date Published05/2019
AbstractAugmenting a robot with the capacity to understand the activities of the people it collaborates with in order to then label and segment those activities allows the robot to generate an efficient and safe plan for performing its own actions. In this work, we introduce an online activity segmentation algorithm that can detect activity segments by processing a partial trajectory. We model the transitions through activities as a hidden Markov model, which runs online by implementing an efficient particle-filtering approach to infer the maximum a posteriori estimate of the activity sequence. This process is complemented by an online search process to refine activity segments using task model information about the partial order of activities. We evaluated our algorithm by comparing its performance to two state-of-the-art activity segmentation algorithms on three human activity datasets. The suggested algorithm improved activity segmentation accuracy across all three datasets compared with the other two approaches, with a range from 11.3% to 65.5%, and could accurately recognize an activity through observation alone for 31.6% of the initial trajectory of that activity, on average. We also implemented the algorithm onto an industrial mobile robot during an automotive assembly task in which the robot tracked a human worker’s progress and provided the worker with the correct materials at the appropriate time.