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Abstract

Ensuring human safety is one of the most important considerations
within the field of human-robot interaction (HRI). This does not sim-
ply involve preventing collisions between humans and robots operating
within a shared space; we must consider all possible ways in which harm
could come to a person, ranging from physical contact to adverse psy-
chological effects resulting from unpleasant or dangerous interaction.
In this work, we define what safe HRI entails and present a survey
of potential methods of ensuring safety during HRI. We classify this
collection of work into four major categories: safety through control,
motion planning, prediction, and consideration of psychological fac-
tors. We discuss recent work in each major category, identify various
sub-categories and discuss how these methods can be utilized to im-
prove HRI safety. We then discuss gaps in the current literature and
suggest future directions for additional work. By creating an organized
categorization of the field, we hope to support future research and the
development of new technologies for safe HRI, as well as facilitate the
use of these techniques by researchers within the HRI community.
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1
Introduction

Human-robot interaction — collaboration, communication, and coop-
eration between humans and robots — is a rapidly growing area of
robotics research. From introducing robotic co-workers into factories
(Unhelkar et al., 2014; Gleeson et al., 2013; Knight, 2013), to provid-
ing in-home robot helpers (Graf et al., 2004), to developing robotic as-
sistants for astronauts on-board the International Space Station (ISS)
(Fong et al., 2013; Diftler et al., 2011; Bualat et al., 2015), there are
a wide variety of beneficial applications for HRI. Whether this inter-
action involves an industrial robot, mobile manipulator, free-flyer, or
even a self-driving car or wheelchair, one should always approach the
development of HRI platforms and technologies from a safety-focused
perspective. The successful advancement of HRI depends upon safety
being a top priority and an integral component of any HRI applica-
tion. In order to understand how to tackle the challenging problem of
ensuring safety in HRI, it is necessary to clearly define what safe HRI
entails and what has been accomplished thus far in terms of standard-
izing safety metrics and methods, and survey the current literature to
identify areas that warrant further research and development.
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1.1 Defining Safety in HRI

In order to ensure safe HRI, it is necessary to first understand what
constitutes safety and its various components. In 1942, science fiction
writer Isaac Asimov proposed three “Laws of Robotics,” the first of
which states: “A robot may not injure a human being or, through inac-
tion, allow a human being to come to harm” (Asimov, 1942). Inspired
by Asimov’s definition, we can identify two distinct ways in which a
robot could inflict harm on a human being.

The first is through direct physical contact. In simple terms, in
order for HRI to be safe, no unintentional or unwanted contact can
occur between the human and robot. Furthermore, if physical contact
is required for a given task (or strict prevention of physical contact is
neither possible nor practical) the forces exerted upon the human must
remain below thresholds for physical discomfort or injury. We define
this form of safety in HRI as physical safety.

Preventing physical harm alone, however, does not necessarily
translate to stress-free and comfortable interaction. Consider, for ex-
ample, a hypothetical manufacturing scenario in which a robot uses
a sharp cutting implement to perform a task in proximity to human
workers, but is programmed to stop if a human gets too close. While
direct physical harm is prevented through careful programming, this
type of interaction can be stressful for humans. Importantly, psycho-
logical discomfort or stress can also be induced by a robot’s appearance,
embodiment, gaze, speech, posture, and other attributes (Mumm and
Mutlu, 2011; Butler and Agah, 2001).

Stress can have serious negative effects on health (McEwen, 1993),
which makes stressful HRI a potential source of harm. Furthermore,
psychological discomfort caused by any of the other aforementioned
factors, as well as robotic violation of social conventions and norms
during interaction, can also have serious negative effects on humans
over time. We define the prevention of this type of indirect, psycho-
logical harm as maintaining psychological safety. It is important to
note that psychological harm, in contrast with physical harm, is not
limited to proximal interaction, as it can also be sustained through
distal interaction via a remote interface.
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As HRI can be applied in a multitude of domains, we apply a broad
definition of the term “robot” in the context of this work. Although the
individual works described in this survey are generally presented in the
context of interaction with one type of robot in a specific domain, the
methods for safety in HRI we present in the following sections are
domain independent and relevant to a wide array of robot types, such
as manipulator arms, drones, personal robots, and self-driving cars.

1.2 Safety Standards and Criteria

The development of guidelines and requirements in the form of interna-
tional safety standards represents an important effort toward ensuring
safety during human-robot interaction. The International Organization
for Standardization (ISO) has been working toward releasing docu-
ments that specify how best to maintain safety during interaction be-
tween humans and industrial robots. The first step in this process was
the release of the ISO 10218 document entitled “Robots and robotic
devices – Safety requirements for industrial robots,” which is composed
of two parts: “Robots” and “Robot systems and integration” (Interna-
tional Organization for Standardization, 2011a,b). The ISO 10218 out-
lines some potential methods of safe collaborative manipulation — for
example, speed and separation monitoring and power and force limiting
— as well as relevant safety requirements.

The technical specification accompanying this document is the
ISO/TS 15066 (entitled “Robots and robotic devices – Collabora-
tive robots”) (International Organization for Standardization, 2016).
This technical specification provides additional information and de-
tails about how to achieve the requirements established by ISO 10218.
It includes quantitative biomechanical limits, such as allowable peak
forces or pressures for various parts of the body, as well as equations
for speed and separation monitoring. In support of the development
of the ISO technical specification, organizations including the National
Institute of Standards and Technology (NIST) collaborated with ISO
to develop protocols and metrics that would allow for characterization
of the effectiveness of a robot’s safety methods (National Institute of
Standards and Technology, 2013).
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The safety criteria mentioned above were developed in part through
study of human-robot collisions. Recent experiments have incorporated
collisions between robots and instrumented crash-test dummies, both
in simulation (Oberer and Schraft, 2007) and using actual physical
hardware (Haddadin et al., 2007, 2009). Other research has incorpo-
rated crash tests involving simulated human tissue, such as abdominal
samples collected from pigs (Haddadin et al., 2012). Work with ac-
tual human-robot collisions has also been conducted to classify pain
(Povse et al., 2010) and injury thresholds (Fraunhofer IFF, 2013), as
well as to investigate the effectiveness of control strategies (Haddadin
et al., 2008). Various injury prevention criteria for HRI have resulted
from these works (Jung-Jun Park and Jae-Bok Song, 2009; Oberer and
Schraft, 2007; Haddadin et al., 2012). Importantly, the findings are
discussed in relation to the ISO standard regulations, providing feed-
back for their further refinement and improvement. (Haddadin (2013)
have presented a detailed discussion of the limitations of the current
standards and proposed improvements.) By combining the efforts of
academic and industrial research groups and standardization organiza-
tions, more suitable and relevant standards and metrics can be devel-
oped and introduced in subsequent revisions of the ISO standards.

While the development of the aforementioned international safety
standards represents a crucial first step toward improving HRI safety,
it is important to note that these standards are being developed specifi-
cally for industrial applications. Although many of the principles would
likely transfer to other types of robots and applications, the standards’
scope is too narrow to fully address other uses, such as robotic tour
guides or assistants for the elderly. We therefore must look beyond
these industrial standards in order to identify all the pertinent aspects
of safe HRI and the various possible safety methods that could be em-
ployed to address them.

1.3 Goals and Scope

The main goal of this work is to organize and summarize the large body
of research related to facilitation of safe human-robot interaction. This
survey describes the strategies and methods that have been developed



266 Introduction

thus far, organizes them into subcategories, characterizes relationships
between the strategies, and identifies potential gaps in the existing
knowledge that warrant further research.

1.3.1 Method

As there is a vast amount of work that could be applied to safe HRI, it
was imperative to select a cohesive and meaningful subset of research.
We conducted a survey to identify the various methods that could be
utilized to make HRI safe. This is in contrast to other work, such as that
of Vasic and Billard (2013), who partially outlined these possibilities
but organized the paper according to application and focused on other
aspects of safety, such as potential sources of danger and liability.

Also, we chose to focus our survey on recent research. A survey on
safety in HRI by Pervez and Ryu (2008) covered much of the earlier
work conducted within the field; this review mostly discusses research
that had been published since that survey. Additionally, our survey fo-
cuses on the safety aspects of proximal HRI, and so we do not consider,
for example, safety concerns during remote operation. Furthermore, we
chose to focus this survey on interaction with robots acting as inde-
pendent entities, and so we do not consider the regime of interaction
with wearable robots, such as exoskeletons or orthotics. (We direct the
reader interested in the latter topic to recent works in both industrial
and medical applications (Kolakowsky-Hayner et al., 2013; O’Sullivan
et al., 2015; Zeilig et al., 2012).) This survey also does not focus on the
psychological safety aspects of interacting with social robots and the
potential impact such robots can have when emulating human person-
ality traits or social behaviors. (The reader interested in these aspects
should consult works relating social psychology to robotics, such as
papers by Young et al. (2008) and Fong et al. (2003).)

For the present work, we chose not to focus on robot hardware devel-
opment as a potential method of ensuring safety in HRI. In recent years,
robotics manufacturers have become increasingly involved in the devel-
opment of robots designed specifically for proximal HRI. (Examples of
such robots include the ABB YuMi (ABB, 2015), the RethinkRobotics
Baxter and Sawyer (Robotics, 2015a,b), and the KUKA LBR (KUKA,



1.3. Goals and Scope 267

2015).) There has also been a significant amount of work in hardware
development for safe HRI within the academic community, and the
technologies used by these new robots are often a product of this re-
search. This includes work on new actuators designed to be human-safe,
such as series elastic actuators (SEA) (Pratt and Williamson, 1995),
variable impedance actuators (VIA) (Vanderborght et al., 2013), dis-
tributed macro-mini actuation (Zinn et al., 2004), or external hardware,
such as robot skins (Hoshi and Shinoda, 2006). (We direct the reader
interested in compliant actuator designs to the review by Ham et al.
(2009).)

Defining the scope of our work as outlined above, our selection
process focused on papers published between 2008 and 2015 from the
conference proceedings of the ACM/IEEE International Conference
on Human-robot Interaction (HRI), IEEE International Conference
on Robotics and Automation (ICRA), Robotics: Science and Systems
(RSS), the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), the IEEE RAS/EMBS International Conference
on Biomedical Robotics and Biomechatronics (BioRob), and the Inter-
national Conference on Advanced Robotics (ICAR), as well as journal
articles published in the International Journal of Robotics Research
(IJRR), the Journal of Mechanical Science and Technology (JMST),
the IEEE Transactions on Robotics (T-RO), the IEEE Transactions
on Automation Science and Engineering (T-ASE), and the Journal of
Robotic Systems.

We first grouped papers according to theme; common keywords
among papers within each theme were then used as further search cri-
teria. We focused our final selection on publications with higher im-
pact factors and according to the selectivity of the publication venue.
We relaxed these constraints if a topic associated with a keyword was
underrepresented or the work was published within the last 3 years.
We also recursively investigated works cited by the collected papers to
identify additional potential sources. The resulting collection was then
organized into the following main themes: safety through control, plan-
ning, prediction, and consideration of psychological factors, as depicted
in Figure 1.1.
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Safe Human-Robot Interaction

Control

Pre-Collision

Post-Collision

Motion Planning

Constraints Based 
on Human   
Presence

Geometric and  
Task-Based 
Constraints

Prediction

Human Activity

Human Motion

Robot Motions and 
Actions

Psychological 
Consideration

Robot Behavior 
Adaptation

Assessment

Figure 1.1: Diagram depicting the major methods of providing safety in HRI.

1.3.2 Organization

The remainder of this monograph is divided into sections based on the
four main aspects of safety in HRI depicted in Figure 1.1. Each section
describes, in detail, a selection of recent related works, synthesizes these
works into various sub-topics, and outlines the relationships between
them.

In Section 2: Safety Through Control, we describe pre- and post-
collision control methods for providing safe HRI. The former category
deals with control methods prior to contact between a human and
robot. This involves limiting key parameters, such as velocity or energy,
or preventing collisions from occurring through the use of methods in-
cluding defining safety regions, tracking separation distance, and guid-
ing robot motion away from humans. The post-collision sub-category
involves techniques such as minimizing injury by switching between
various control methods when a collision is detected, distinguishing
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between intentional and non-intentional contact, and allowing for safe
physical contact if necessary for effective collaboration.

In Section 3: Safety Through Motion Planning, we highlight work
focused on planning safer robot paths and motions in order to avoid
potential collisions. By taking various human-related parameters such
as separation distance or gaze direction directly into account when
forming motion plans, a robot is able to choose safer and more efficient
paths and motions.

In Section 4: Safety Through Prediction, we discuss the various ways
that human and robot behavior prediction can allow for safer HRI. This
involves predicting human actions and motions through a variety of
methods, including sequence matching, probabilistic plan recognition,
and motion characteristic analysis. Also, as HRI is inherently a two-
way interaction, it is also important to consider the predictability of
the robot in order to allow the human to anticipate the robot’s motions
and actions.

In Section 5: Safety Through Consideration of Psychological Fac-
tors, we focus on methods of assessing and maintaining psychological
safety during HRI. As mentioned in Section 1.1, psychological safety
maintenance involves ensuring that interaction remains stress-free and
comfortable. Work in this field has included the development of metrics
through physiological sensing, questionnaires, and behavioral metrics
and identifying which factors — such as a robot’s size and speed or
a human’s prior experience with robots — can affect perceived safety
and comfort.

Finally, in Section 6: we discuss possible future directions for re-
search that would benefit the field of HRI safety. We draw upon lessons
learned from prior work, identify gaps in various research subcategories,
and offer specific suggestions for what could be investigated further in
order to address these gaps.



2
Safety Through Control

One common method for achieving safety during human-robot interac-
tion is through low-level control of robot motion. This type of safety
provision is often the simplest method of enabling safe human-robot
coexistence, as it does not require complex prediction models or plan-
ners — nor, in some cases, does it even require sensing to monitor the
human. Nonetheless, implementation of these solutions can be quite
complex, as this method often includes time-critical constraints that
require rapid execution.

Control methods for improving safety are divisible into two main
categories: pre- and post-collision. Pre-collision control methods are
implemented before human-robot collision occurs, either by ensuring
collision does not occur in the first place or by bounding robot pa-
rameters such as velocity or energy. If unexpected or unpreventable
contact occurs, post-collision control methods are designed to quickly
detect the collision and minimize harm to both the human and robot.
(Note that in this context, “collision” is not limited to blunt impacts,
but can also include other harmful forms of contact, such as shearing,
cutting, or puncturing.)

270
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2.1 Pre-Collision Methods

Pre-collision control methods, sometimes referred to as “prevention”
methods, are techniques intended to ensure safety during HRI by moni-
toring either the human, the robot, or both and modifying robot control
parameters prior to incidence of collision or contact. The various tech-
niques and methods designed to provide safety through pre-collision
control discussed in this section are depicted in Figure 2.1 below.

2.1 Pre-Collision Methods 

2.1.1 Quantitative Limits 2.1.2 Speed and 
Separation Monitoring 

Safety Zones and 
Separation Distance 

Non-Intrusive, Real-
Time Measurement 

2.1.3 Potential Field 
Methods 

Human Features 

Robot Features 

Figure 2.1: Diagram depicting the pre-collision control methods discussed in Sec-
tion 2.1.

2.1.1 Quantitative Limits

One major subset of this category is focused on providing quantitative
guarantees that a robot cannot pose any threat to a human, even in the
event of a collision. This can be achieved by limiting a variety of param-
eters, such as the robot’s joint velocity, energy, or potential exertion of
force. Broquere et al. (2008), for example, developed a trajectory plan-
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ner that limits jerk, acceleration, and velocity. The ability to compute
new trajectories in real time is critical for applying such a planner in a
dynamic HRI setting. The planner developed by Broquere et al. meets
this need, as it constructs trajectories using polygonal chains of cubic
functions for which the parameters are computed directly, allowing for
real-time control.

In the approach taken by Laffranchi et al. (2009), real-time ad-
justment is even more critical: Instead of planning trajectories that
might require adjustment due to changes in the positions of humans
or other objects in the environment, their method focused on real-time
tracking and limiting of the total amount of energy stored within the
system — namely, the sum of kinetic, gravitational potential, and elas-
tic potential energies. In this work, the controller was implemented on
a prototype single-joint series elastic actuator and tested in two cases:
accidental collision and free motion. The actuator was commanded to
follow a sinusoidal path in both cases, but a foam block was placed
in the actuator’s path during the former case. Laffranchi et al found
that the energy of the system remained below a predefined thresh-
old through an online modification of the reference value of the po-
sition controller. Heinzmann and Zelinsky (2003), on the other hand,
developed a control approach that limits the potential force of im-
pact with static obstacles by imposing a safety envelope on the torque
commands of a position control algorithm. This method successfully
limited impact forces, regardless of where on the robot the collision
occurred.

Finally, Haddadin et al. (2012) took the unique approach of embed-
ding injury knowledge into robot control by studying the relationships
between robot mass, velocity, and impact geometry with injury. As the
authors wrote, attempting to form a direct relation between these vari-
ous input parameters and injury is different from other approaches that
rely upon deriving relationships with robot collision outputs, such as
exerted forces or stresses. In this work, the authors identified impact
geometry primitives and performed drop tests on abdominal samples
from pigs while varying mass and speed, and used the international
medical classification system developed by the AO Foundation (AO,
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2015) to analyze the injuries. Risk curves for each impact geometry
primitive were derived from the results from these tests, establishing
a relationship between impact speed and impact geometry, mass, and
the impacted body part. The authors then used these curves to scale
the velocity of the robot to ensure that injury above a certain threshold
could not occur in the event of an unexpected collision.

2.1.2 Speed and Separation Monitoring

Slowing down or stopping the robot through the use of safety zones
or distance of separation is another method of preventing collision
through control. The robotics and automation company ABB has devel-
oped SafeMove, a system that utilizes programmable, complex safety
zones that can control robot speed (Kock et al., 2006). This system
allows for safer interaction between a human and an industrial robot
by using external sensing to track the presence of humans or objects
within safety zones and adjusting the robot’s speed to the zones’ pre-
defined limits. In contrast with static, predefined safety zones, Vogel
et al. (2013) developed a system that incorporates dynamically chang-
ing zones based on robot joint positions and velocities and displays
these zones on the surface around the robot via a projector. The con-
trol system detects when this virtual safety zone is entered, and stops
the robot as needed.

Lasota et al. (2014) developed a safety system for close-proximity in-
teraction with standard industrial robots that leverages accurate sens-
ing of a human’s location and the robot’s current configuration to
rapidly calculate the distance of separation between the human and
robot. This measurement is then used to gradually decrease the robot’s
speed according to a tunable function that can be adjusted via task-
dependent parameters. This approach eliminates the need for predefin-
ing conservative safety zones; however, while scaling the robot’s velocity
as a function of separation distance can be an effective method of im-
proving safety in HRI, slowing the robot can often lead to significant
decreases in the productivity of human-robot collaboration.

To address this, Zanchettin et al. (2015) developed a velocity scal-
ing approach that takes advantage of redundant degrees of freedom,
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with the goal of maintaining safety while retaining productivity. In
this work, a safety region is calculated based on the robot’s velocity
and braking distance, as well as a clearance parameter that takes un-
certainties in measurement and modeling into account. The collision
avoidance, calculated at the joint space level to allow for real-time de-
ployment, uses redundant degrees of freedom to move the robot’s joints
away from the human while still maintaining the correct end effector
position. This enables the robot to continue to perform its task while
maintaining both a greater distance of separation from the human and
a higher speed.

One significant challenge of deploying systems such as the ones cited
above is providing nonintrusive methods of accurate human localiza-
tion. One viable method presented by Rybski et al. (2012) uses sen-
sor fusion techniques to combine data collected from stereo and range
cameras in order to monitor an industrial workcell. The system detects
people and robots within the environment and generates dynamically
changing “danger zones” based on the position and trajectory of the
robot. In contrast, Flacco et al. (2012) utilized depth sensors to es-
timate the distance between the robot and both static and moving
obstacles. This real-time distance measurement, as well as an estimate
of obstacle velocity, was then used with a controller based on repulsive
force vectors as a collision prevention technique.

To reduce the possibility of occlusion and to accommodate unstruc-
tured tasks for which the optimal sensing locations are not known a
priori, Buizza Avanzini et al. (2014) utilized an on-board sensing ap-
proach. The authors developed a distributed distance sensor and an
optimization strategy for placement of sensor nodes on a robot’s body.
The distance sensor was integrated into a framework utilizing the dan-
ger field criterion: a scalar field based on the robot’s configuration and
velocity (Lacevic and Rocco, 2010). In the developed framework, the
robot attempts to maintain task consistency by hierarchically aban-
doning tasks according to their specified priority: For example, the
robot may maintain position but change its orientation as the danger
metric increases, then finally abandon its position if the danger metric
increases beyond a certain threshold.
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2.1.3 Potential Field Methods

Another popular approach to collision prevention via robot control is
calculation of danger criteria and fields, such as with the potential field
approach developed by Khatib (1986). This method allows for more
complex safety behaviors by defining a field of repulsive vectors that
guide the robot’s motion, modifying its trajectory in response to dy-
namically changing environmental factors. One recent work that used
this control approach specifically for HRI safety is that of Calinon et al.
(2010), in which the controller utilized a risk criterion based on the dis-
tance from the robot to the human’s head, as well as the human’s gaze
direction, to safely guide the robot’s motion along trajectories derived
from kinesthetic teaching.

The potential field approach is also often deployed as a component
of integrated safety frameworks. One such framework by Kulić and
Croft (2007) incorporated a safe control module that considers safety
factors such as separation distance and velocity to generate a danger
index to be used by a potential field controller. Furthermore, the esti-
mated affective state of the user, inferred from skin conductance and
heart rate measurement, was also integrated into this danger index. A
framework developed by De Luca and Flacco (2012) differs from this
approach in that it utilizes two unique collision avoidance methods: one
for the robot’s end effector, and one for the other parts of the robot.
This was also done in the work by Flacco et al. (2012) mentioned
earlier, in which repulsive vectors were based on separation distance
measurements.

Haddadin et al. (2010b) also developed a collision avoidance tech-
nique based on the potential field method, but their framework accom-
modates not only the virtual forces caused by proximity to the robot,
but also actual physical contact. The algorithm, designed to have suf-
ficiently low complexity to run in real time, is based on local reactive
motion planning along with velocity scaling, a function not only of dis-
tance but also direction of approach. The resulting system is capable of
producing smooth paths that avoid sudden accelerations and are thus
more physically interpretable by humans.
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In another approach, Polverini et al. (2014) developed the kineo-
static safety field, a safety assessment at the kinematic level and an
extension of the danger field concept by Lacevic and Rocco. The key
improvement of the safety field upon the danger field is that it takes into
account the relative motion between the source of danger and where
the field is computed. Furthermore, the safety field is also dependent
upon the shape and size of the source of danger. The authors validated
the safety field concept by utilizing it as part of a real-time controller
on an early version of the two-armed YuMi robot (ABB, 2015), and
showed that the field can be utilized for preventing both self-collision
and human-robot collision.

In Section 2.1, we presented three pre-collision control techniques
for safety in HRI. First, we discussed how the various methods of calcu-
lating and limiting velocities, potential impact forces, and energy allow
systems to provide quantitative guarantees about the robot’s ability
to inflict harm in the event of unwanted collision. Although such tech-
niques can result in overly conservative motions in the absence of an
imminent collision threat, by imposing global limits on the robot’s mo-
tions, pre-collision safety methods can provide such guarantees without
having to rely upon accurate and robust detection and tracking of co-
located humans.

Next, we highlighted methods that gradually slow a robot’s motion
based on safety zones or separation distance from the human. These
techniques allow for greater flexibility than strictly limiting the robot
using parameters such as energy or velocity, but they also require a low-
latency implementation with robust tracking of the human within the
given space. Furthermore, nonintrusive methods of human localization
and distance measurement are critical for real-world deployment.

Finally, we introduced techniques based on the potential field ap-
proach, which allows for implementation of more complex collision-
avoidance behaviors beyond simply adjusting the robot’s speed. The ef-
ficacy of such a method, however, is directly linked to the strategy used
to construct the potential field. This has led to a variety of implementa-
tions involving not only separation distance, but additional factors such
as the direction of approach, affective state, and human gaze direction.
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2.2 Post-Collision Methods

Using a variety of control strategies to prevent collisions can also be an
effective method of improving safety during HRI. However, depending
upon myriad factors including the type of robot, sensing system, and
assigned task, strict collision prevention is not always possible or prac-
tical — in fact, some human-robot collaborative tasks may require a
certain level of physical contact. As a result, another body of research
has focused on development of control strategies that further ensure
safety through detection of and appropriate reaction to human-robot
collisions. As mentioned previously, this includes not only blunt im-
pacts but other harmful forms of contact, such as shearing, cutting,
or puncturing. Figure 2.2 depicts the hierarchy of topics involved in
utilizing post-collision control as a safety method for HRI.

2.2 Post-Collision Methods

2.2.1 Collision Detection, 
Localization, and Reaction

Non-Collaborative 
Contact

Collaborative Contact

Evaluation

2.2.2 Interactive Control 
Methods

Detection of 
Collaborative Intent

Interaction Strategies

Figure 2.2: Diagram depicting the post-collision safety methods discussed in Sec-
tion 2.2.
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2.2.1 Collision Detection, Localization, and Reaction:

The first step toward utilizing post-collision control methods for HRI
safety is detecting whether a collision has occurred. As the use of ex-
ternal sensing is often impractical, much of the work in detection and
localization of human-robot collisions has focused on methods that in-
corporate on-board sensing. For example, De Luca et al. (2006) pre-
sented a collision detection system requiring only proprioceptive mea-
surement. This system utilizes a collision detection signal that can be
calculated using only the joint positions, velocities, and commanded
torques, and incorporates a measure of energy defined as the sum of
kinetic and gravitational potential energies. Furthermore, the system
utilizes a collision identification signal calculated from the same quan-
tities as the detection signal to provide information about which links
experienced impact and from what direction, allowing the system to
move the robot away from the collision site after impact detection.

Similar to the work by De Luca et al., Geravand et al. (2013) de-
veloped a detection and reaction system that does not require torque
sensing. One key advantage of this system is that it does not rely upon
knowledge of joint velocities, which often requires numerical integration
that introduces noise; rather, it makes use of motor current measure-
ments. This system, designed for industrial robots with a closed-control
architecture, also does not require a priori knowledge of the dynamic
model. It is not only capable of detecting collision, but also whether the
collision was intentional or non-intentional, in order to switch the robot
to a “collaborative mode” in which the robot accepts redirection from
the human as needed. This switch is performed through parallel use
of high- and low-pass filters on the motor currents, with the assump-
tion that non-intentional, hard impacts generate a high-frequency sig-
nal and intentional, soft impacts generate a low-frequency signal. The
system analyzes filtered signals and compares them with time-varying
thresholds: a signal exceeding a threshold after being run through the
high-pass filter indicates non-intentional impact, while intentional con-
tact is identified if at least one of the low-pass-filtered signals exceeds
a threshold and no thresholds are exceeded by signals run through the
high-pass filter.
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Another system developed by Golz et al. (2015) is also capable of
discriminating between intentional and unintentional robot collisions
utilizing not only machine learning but also a model of physical con-
tact. This model, along with insights gained through observation of
real impact data, were used to derive a set of features for classifica-
tion with a non-linear support vector machine (SVM). The authors
were able to show, both through simulation and results from physical
experiments, that the classifier is capable of accurately discriminating
between intentional and unintentional collisions online.

De Luca et al. (2009) developed a collision detection system for
a prototype variable stiffness actuator that, similarly to the system
developed by Geravand et al., does not require torque sensing. Their
momentum-based system is combined with an active reaction strategy
that simultaneously moves the robot arm and reduces its stiffness to
allow the arm to gently bounce away from the collision and come to a
stop.

In addition to developing collision detection and reaction strategies,
several researchers have also quantitatively assessed the effectiveness of
post-collision control strategies. For example, Haddadin et al. (2008)
tested a collision detection and reaction scheme in a controlled exper-
iment involving specialized hardware setups, including instrumented
crash-test dummies. Impacts with actual humans at the chest and up-
per arm were performed and analyzed as well. The researchers pre-
sented results for four post-collision control strategies indicating how
their post-impact force time-series profiles differed, and found that the
implemented system was successful at maintaining forces below thresh-
olds for harm. The same control strategies were tested in the work by
De Luca et al. (2006) mentioned previously, in which the authors com-
pared residual torque time-series during collision with a balloon.

Vick et al. (2013) presented a post-collision safety system for a
standard industrial robot that uses estimations of external forces to
limit torques and prevent exertion of force beyond a specified thresh-
old. The researchers evaluated the effectiveness of this system in two
experiments: one involving a human pushing against a stationary robot,
and another involving human interference with a robot in motion. In
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the former, a participant applied force to the robot as it attempted to
hold its position. Once the applied force surpassed a preset threshold of
150N, the robot would move away from the source in order to limit the
contact force to the preset value. In the latter experiment, the robot at-
tempted to perform a sinusoidal motion through position control while
a human interfered with its motion. If the force exerted on the human
surpassed the given threshold, the robot would modify its path to re-
duce the force. The authors were able to show through quantitative
assessment that the predefined limit was successfully maintained.

Haddadin et al. (2010a) studied soft-tissue injury (such as abra-
sions, contusions, lacerations, and punctures) caused by robots hold-
ing sharp tools. The authors performed experiments in which robots
performed stabbing and cutting motions on silicone, pig tissue, and
human volunteers, and evaluated three collision reaction strategies in
order to determine their effectiveness at reducing exerted forces and
penetration depth. The results indicated significant potential for re-
ducing soft-tissue injuries during HRI if appropriate control responses
are deployed, even with robots holding sharp objects and moving at
speeds as high as 0.75 m/s.

2.2.2 Interactive Control Methods

As mentioned in the previous section, determining whether contact is
intentional or unintentional is often a goal of collision detection sys-
tems. Upon detection of intentional contact, specialized safety mea-
sures and methodologies that differ from the “detection and reaction”
paradigm are required: Instead of simply moving away from the colli-
sion or switching control methods in order to minimize harm, the robot
must now reason about the human’s collaborative intent and how best
to support him or her during the interaction.

In addition to the works by Geravand et al. (2013) and Golz et al.
(2015) mentioned earlier, several other researchers have developed sys-
tems that allow for safe collaborative control modes. One framework
by De Luca and Flacco (2012) infers whether the user wants to en-
ter a collaborative mode based on his or her gesture and speech. This
framework designates specific parts of the human body that the robot
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is allowed to make contact with during collaboration (e.g., the hands),
and those with which the robot is not allowed to make contact (e.g., the
head). Once collaboration is initiated, contact forces with the allowed
human contact points are estimated and the robot is controlled such
that predefined thresholds are not exceeded, while restricted contact
points are avoided altogether.

Erden and Tomiyama (2010) developed an interactive control
scheme for back-drivable robots that does not require a dynamics model
or joint velocities — as with the residual method used by De Luca et al.
— nor measurement of joint torques or motor current. In this approach,
a human moves a robotic manipulator via continuous contact, and the
system determines his or her intent through calculation of control ef-
fort based on conservation of momentum. Namely, in a back-drivable,
gravity-compensated robot, the total momentum added to the system
by the user and the additional momentum required by the robot to
return to the system to a stop is zero. Through knowledge of the mo-
mentum delivered by the controller, the momentum and force exerted
by the human can be estimated. Once the interaction mode is active,
the user can then guide the robot within a gravity-compensated mode1.

As we discussed in Section 2.2, the foundation of any effective
post-collision control approach to safe HRI is the ability to accurately
detect and localize a collision and then appropriately react to it. Each
of the methods presented above requires different robot sensors and
has unique benefits and drawbacks, making optimal deployment of
these and other, similar methods dependent upon the specific robot
being used and the task being performed. Furthermore, thorough
evaluations are imperative in order to understand the efficacy of
the collision reaction strategies. The works listed above have made
significant headway toward this goal, testing post-collision methods
with crash-test dummies and even soft-tissue samples from animals.

1In general, for continuous interaction such as that presented in work by Gera-
vand et al. (2013), De Luca and Flacco (2012), and Erden and Tomiyama (2010),
some form of compliance control is needed. To learn more about recent advancements
and applications of compliance control in the field of HRI, we direct the reader to a
recent survey by Khan et al. (2014).
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As interaction scenarios become increasingly complex, the ability to
detect whether human-robot contact is intentional or accidental is key
to selecting an appropriate robot behavior to ensure safe interaction.
As seen from the related works above, collaborative contact requires
special considerations, such as where on the human body the contact
can occur, as well as the monitoring and limiting of forces during the
interaction.

2.3 Summary

In this section, we discussed a variety of control-based methods for
facilitating safe HRI. First, we outlined pre-collision methods, which
attempt to prevent unwanted contact in three distinct ways: by en-
forcing quantitative limits on parameters such as speed or energy, by
monitoring the physical distance between the human and robot and
adjusting robot speed accordingly, and by using the potential field ap-
proach to guide the robot away from the human. We addressed a variety
of trade-offs between these approaches, and noted that the three meth-
ods allow for progressively more complex safety behaviors, but at the
cost of more-complex implementation.

As strict prevention of collisions is not always possible, the other
class of control-based methods of safety in HRI discussed here is fo-
cused on how to minimize harm once collision occurs. These post-
collision methods function by detecting a collision, localizing where
on the robot contact was made, and deciding how to react. Further-
more, we addressed collaborative contact with the robot, along with
the implications for how control strategy changes in such a scenario
with regard to maintaining safety.

Overall, control-based methods have been shown to be effective
tools for safe HRI. In general, these methods do not require complex
models of the environment and, in some cases, require limited or no
tracking of the human. This quality improves robustness, as these
approaches do not need to rely upon accurate tracking or potentially
faulty models.
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However, control-based techniques tend to be purely reactive, and
as such, can prove to be insufficient for maintaining safe HRI. By taking
advantage of knowledge about the environment and task at hand and
formulating appropriate models, more proactive approaches to main-
taining safety involving planning and prediction can be realized. We
discuss these topics in Sections 3 and 4, respectively.



3
Safety Through Motion Planning

Providing safety through real-time control can prevent or mitigate un-
wanted collisions between humans and robots; however, such meth-
ods can be insufficient with regard to both safety and efficiency in
many applications. Results from an experiment by Lasota and Shah
(2015) assessing close-proximity human-robot collaboration indicated
that simply preventing collisions as they are about to occur can lead
to inefficient human-robot interaction and negatively impact perceived
safety and comfort. (For a dedicated discussion of methods useful for
ensuring HRI does not cause psychological discomfort, see Section 5.)

In this experiment, participants performed a collaborative task with
a robot operating in two distinct modes: a standard mode in which the
robot determined the quickest path to its goals and employed a pre-
collision safety system based on separation distance to slow and stop its
motion (Lasota et al., 2014), and an adaptive mode in which the robot
used human-aware motion planning to avoid portions of the shared
workspace that it expected the human to occupy.

The researchers found that the human-aware motion planner led
to better team fluency, as measured by quantitative metrics such as
task execution time and the amount of concurrent motion. The motion
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planner was also associated with greater satisfaction with the robot as
a teammate and higher perceived levels of safety and comfort among
participants, as evaluated through questionnaire responses. Although
the control-based system maintained physical safety in both modes, the
lower degree of perceived safety observed during operation in the stan-
dard mode could have a significant negative impact on psychological
safety.

The fact that, in certain scenarios, collision prevention and allevi-
ation through low-level control has been shown to lead to significantly
poorer safety and efficiency compared with human-aware motion plan-
ning provides significant motivation for utilizing motion planning as
a safety measure during HRI. This would involve the development of
motion planners that directly consider human presence and movement
when computing robot paths and motions, as well as motion planners
capable of reasoning on both geometric and task-based constraints and
supporting rapid, real-time replanning. These and other related topics
covered in this section are depicted in Figure 3.1.

3. Safety Through 
Motion Planning 

3.1 Constraints Based on  
Human Presence 

Robot Features 

Human Features 

3.2 Geometric and Task-Based 
Constraints 

3.2.1 Constraint Fusion 
Techniques 

3.2.2 Hierarchical Encoding 
Methods 

Figure 3.1: Diagram depicting the constraints, features, and techniques discussed
in Section 3.
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3.1 Constraints Based on Human Presence

The primary method by which robot motion planning can serve as a
tool for HRI is through direct consideration of constraints related to
the presence of human agents, such as distance of separation, human
gaze direction, and robot motion legibility. This can be achieved by di-
rectly incorporating parameters such as these into the criteria and cost
functions used by motion planning algorithms. Doing so enables motion
planners to specifically consider how best to plan around the presence of
humans, as opposed to treating humans as generic obstacles within an
environment. Direct consideration of human-based constraints makes
these motion planners very useful for improving safety in HRI through
their ability to proactively avoid motion conflicts and produce comfort-
able and socially acceptable motions. Furthermore, in contrast with the
threshold-based control approaches outlined in Section 2.1, parameters
can be minimized over the course of motion rather than only when
potentially dangerous motions approach safety thresholds.

A variety of planners and frameworks that consider human-based
constraints on motion planning have been developed over the past
decade. One motion planner by Kulić and Croft (2005), applied specif-
ically to robotic manipulation during a handover task, minimized a
danger criterion based on robot inertia and the distance between the
human and the center of mass of each robot link. The safety framework
by Kulić and Croft (2007) mentioned in Section 2.1 incorporates this
danger criterion formulation and motion planner into a “long-term”
component, which evaluates the safety of a proposed robot path prior
to its execution. The pre-collision control methods described previously,
on the other hand, are utilized within a “short-term” component, which
considers safety methods that respond to imminent threats once the
robot begins to carry out the planned path. By minimizing the inertia
of the robot throughout the motion path, the planner ensures that the
robot is already in a safe configuration in the event of an unanticipated
collision.

This concept is quite similar to the idea behind some of the control-
based safety systems described in Section 2.1 that attempt to keep pa-
rameters such as velocity or energy below predefined thresholds. The
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key difference, however, is that these systems also consider planning
motions that minimize a parameter such as inertia, as opposed to im-
posing a limit through low-level control methods that react as the robot
approaches or surpasses a threshold. In this way, the relevant safety pa-
rameters to be minimized can be kept as low as possible throughout
robot motion — and, depending upon how conservatively the system
defines the cost function, can remain far below predefined safety thresh-
olds.

A different framework, developed by Sisbot and Alami (2012), fo-
cuses on designing not only safe but comfortable and socially accept-
able robot motions. This is achieved by considering human kinematics,
vision field, posture, and preferences, as well as the legibility of the
robot’s actions. In a handover task performed with this framework,
the system chooses robot paths such that the human can easily grasp
the object being handed over, while the robot both maintains a safe
distance and moves in a manner that is visible to the human. The ac-
tion is made legible by directing the robot’s gaze toward the object
being handed over at the appropriate time. This work, which focuses
on close-proximity manipulation, is similar to a prior investigation of
co-navigation conducted by the authors (Sisbot et al., 2007).

Another framework by Sisbot et al. (2010) combines various aspects
of their prior work and incorporates considerations for making motion
comfortable by limiting jerk and acceleration. Dehais et al. (2011) pro-
vided an experimental evaluation of the above motion planner using
human subjects. Results from physiological sensing based on galvanic
skin response, deltoid muscle activity, and ocular activity, combined
with questionnaire responses, indicated significant differences between
the considered motions. The evaluated motion types each involved dif-
ferent combinations of legibility, safety, and comfort based on robot
speed and whether grasp detection and the Human-Aware Manipula-
tion Planner developed by Sisbot et al. (2007) were used or not.

As indicated by questionnaire responses, participants preferred the
condition that involved the human-aware planner and grasp detection.
Due to the study design not being full factorial, the direct effects of
the different motion components on physiological measures could not be
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determined, but the results did suggest that these measures could serve
to discriminate between the motions. A motion planner developed by
Mainprice et al. (2011) considers similar HRI constraints — specifically,
human vision field, separation distance, and reachability — to drive a
cost-based, random-sampling search in order to plan safe robot motions
within cluttered environments. This planner incorporates the T-RRT
algorithm and local path optimizations to generate paths.

Approaching the problem from a different perspective, Morales
et al. (2015) evaluated safe motion planning for an autonomous ve-
hicle with a human passenger. The authors developed the Human-
Comfortable Path Planner (HCoPP), which takes human preferences
into account, such as how far from a wall people prefer to travel when
moving down a corridor, as well as visibility around corners when ap-
proaching a turn. The framework utilizes a three-layer cost map to
integrate the constraints responsible for balancing between optimizing
path length, as well as path comfort based on position and visibil-
ity. The authors assessed the effectiveness of the motion planner via
a user study in which the HCoPP yielded significantly more pleasant
and comfortable paths compared with a baseline motion planner, as
assessed through questionnaire responses.

3.2 Geometric and Task-Based Constraints

In order for robot motion planning to be an effective method of im-
proving safety in HRI, the motion planner must be capable of rapid re-
planning and of taking both geometric and task-based constraints into
consideration. The necessity for rapid replanning is due to the inher-
ent uncertainty resulting from the presence of human agents within a
workspace. People not only display significant intra- and interpersonal
variability and low repeatability of motions (Stergiou, 2004; Chaffin
and Faraway, 2000), but can also unexpectedly change their prefer-
ences while performing tasks in terms of which actions are taken or the
sequence in which actions are performed. Even the best motion and
behavior models cannot account for all human-induced uncertainty,
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making it important for a robot to have the ability to replan motions
quickly should the need arise.

While task models and representations may not be able to capture
all potential task variations with perfect accuracy, combining task-
based and geometric constraints in robot motion planning for HRI
safety has several key benefits. Depending upon the level of integration,
this method can also be viewed as the combination of task and motion
planning into a single framework. While safety regions and buffers can
be encoded with geometric constraints, the inclusion of task-based con-
straints allows for consideration of additional information that could
serve to guide a robot, such as where a human is likely to move to
or reach for based on prior actions. This is especially true in highly
structured domains, where prior observations could be utilized to make
predictions about future events.

Another key benefit of combining these two constraint types is that
it allows for significantly faster computation through synergistic search-
space pruning. In other words, by combining task-based and geometric
constraints, it becomes possible to identify configurations that cannot
be part of the solution and would not have been identified if task-based
and geometric constraints were considered separately.

3.2.1 Constraint Fusion Techniques

Several different implementations of planners that utilize geometric and
task-based constraints can be found in literature, and each implemen-
tation combines these constraint classes in different ways and employs
various specific sub-planners to make use of the particular qualities of
the chosen planning methods. Erdem et al. (2011), for example, intro-
duced a framework that combines high-level, causality-based represen-
tations with low-level geometric reasoning. For causality-based reason-
ing, the framework utilizes the Causal Calculator (CCalc) (McCain,
1997) as its action domain description to encode effects and precondi-
tions of actions, and the Virtual Reality Modeling Language (VRML)
to encode a description of geometric models (Bell et al., 1995). Once
the user defines the planning problem and the framework generates
an initial plan, the low-level geometric reasoning is performed using a
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motion planner based on the Rapidly-Exploring Random Tree (RRT)
algorithm. In this framework, selected geometric models are embed-
ded directly into the high-level representation, allowing geometric con-
straints to guide the high-level planning process. Furthermore, if no
kinematically feasible solution exists due to unmodeled geometric con-
straints, the motion planner can modify the high-level description in
order to guide the search. In this manner, the geometric planner guides
the causality-based planner at the representation level.

The method developed by Plaku and Hager (2010) also incorporates
a combination of sampling-based motion planning and symbolic action
planning, but integrates these by maintaining a single search tree that is
iteratively extended until a dynamically feasible and collision-free path
is identified. The algorithm utilizes a high-level specification based on
the Stanford Research Institute Problem Solver (STRIPS) (Fikes and
Nilsson, 1971) for its symbolic action planner, which guides the search
of the motion planner to avoid focusing on regions unlikely to yield
solutions by maintaining a heuristic-based estimate of the utility of
exploring various actions. As the motion planner explores within the
search space, it also provides feedback by updating action utilities. This
interaction between the motion and action planners allows the search
to progress quickly by focusing on search space regions that are more
likely to yield solutions.

Cambon et al. (2009) combined task, motion, and manipulation
planning through a process of defining and exploring the configuration
spaces of robots and other objects within the environment. The authors
also utilized a STRIPS-like formulation to evaluate symbolic and geo-
metric constraints. In this method, identification and computation of
constraints is performed incrementally, with the planner iterating be-
tween attempting to find a solution using the currently available knowl-
edge and searching further within the different configuration spaces
under consideration. One benefit of this approach is that it makes no
assumptions about what methods are used to explore the symbolic and
configuration spaces or how the geometry is represented, resulting in
flexible implementation.
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3.2.2 Hierarchical Encoding Methods

As mentioned previously, rapid computation and replanning are im-
perative when applying motion planners as a method for ensuring safe
HRI, due to the uncertainty introduced by the variability inherent in
human motion and preferences. Reduced computation time and quicker
replanning in combined task and motion planning can be achieved by
utilizing hierarchical encoding schemes.

Work by Wolfe et al. (2010) incorporated vertically integrated hier-
archical task networks within a combined action and motion planner.
In this framework, external solvers generate primitive actions, such as
arm and base movements, at the bottom of the hierarchy. The authors
further improved the speed of the developed system through implemen-
tation of the State-Abstracted Hierarchical Task Network (SAHTN)
algorithm, which receives and reuses information about the relevance
of state variables to particular subtasks.

Kaelbling and Lozano-Perez (2011) also incorporated a hierarchical
representation, but with a focus on short-term planning. This can be
a particularly useful technique for HRI, as the nondeterministic nature
of many real-world environments and applications can render long-
term plans invalid before they are fully executed. The presented mo-
tion and task planning method, given appropriate domain-dependent
choices when developing its structure, allows for the pruning of large
portions of the search space, as well as rapid computation.

3.3 Summary

In this section of the monograph, we discussed the manner in which
motion planning can serve as an effective tool for ensuring safe HRI
by encoding both physical and psychological safety into the motion
planners’ cost functions. This technique allows for a more proactive
approach to ensuring safety compared with the control-based safety
methods discussed in Section 2. Importantly, motion planners enhanced
with consideration for safety can be used for both manipulation and
navigation planning and can be applied to virtually any robotic plat-
form, indicating the versatility of this method of ensuring safety.
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Due to the dynamic nature of any environment occupied by peo-
ple, however, such planners must be able to rapidly recompute new
paths and motions. As described in the preceding sections, this is of-
ten achieved by combining task and motion planning to aid in efficient
traversal of a complex search space, and by utilizing hierarchical en-
codings of the constraints.

There are practical limits, however, to constantly replanning based
solely on the current configuration of a rapidly changing world state.
Consequently, it is beneficial to reason not only on the current state,
but also on predictions of future tasks and motions, which is the topic
of the following section.



4
Safety Through Prediction

In some HRI situations, it is reasonable to assume that the environment
is quasi-static and simply rely upon replanning motions quickly when
the movement of human and robotic agents conflicts with the initial
plan. However, this approach is not appropriate for maintaining safety
within more dynamic environments. In this context, motion plans based
on a quasi-static assumption quickly become obsolete, making reliance
on replanning impractical — particularly if humans and robots are
working in close proximity to one another, as there may not be sufficient
time to replan. As a result, the ability to anticipate the actions and
movements of members of a human-robot team is critically important
for providing safety within dynamic HRI environments. Furthermore,
this ability must extend to all team members, with both robots and
humans able to predict one another’s actions and motions.

4.1 Human Activity Prediction

By predicting which action a person might take next, robot motion
and activity planners such as those described in Section 3 can iden-
tify actions and paths that will result in safe and efficient interaction.
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This selection process can involve adjusting the action the robot will
take, the timing of when that action should be performed, or the mo-
tions the robot will perform in order to achieve the action. Work in
this field has incorporated a wide variety of methods, with researchers
often formulating probabilistic models and frameworks according to
which prediction could be made. Among these approaches, some rea-
son directly on low-level features derived from cameras, depth sensors,
and motion capture systems, while others reason on abstract represen-
tations of actions or task steps in order to predict future activities.
Beyond predicting the next human action, other work in this field fo-
cuses on predicting the timing of the actions, which allows a robot to
not only decide what action to take in order to maintain safety, but also
when it would be best to take that action. These topics are summarized
in Figure 4.1.

4.1 Human Activity 
Prediction 

Predicting Next Action 

4.1.1 Low-Level Sensor 
Data as Input 

4.1.2 Discrete Action 
Labels as Input 

Sequence Matching Probabilistic Plan 
Recognition 

4.1.3 Predicting Action 
Timing 

Figure 4.1: Diagram depicting the methods for human activity prediction discussed
in Section 4.1.
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4.1.1 Low-Level Sensor Data as Input

Work in the field of activity prediction that utilizes low-level representa-
tions of sensor data as input has included a wide spectrum of prediction
techniques, ranging from detection of activity processes (such as walk-
ing or pouring a liquid) to action goals (such as what item a person is
about to grasp). With regard to activity processes, Ryoo (2011) devel-
oped an early prediction approach that utilizes an integral histogram
of spatio-temporal features derived from RGB videos. The integral his-
togram, an encoding of how histogram distributions change over time,
is constructed from histograms of visual words present in successive
frames of the video input. These visual words are determined by analyz-
ing points of interest in the frame where salient motion is occurring and
computing a description of these points by summarizing gradients in
the corresponding portion of the frame as time progresses. The method
then uses a clustering algorithm to detect groups of similar features.

In an approach that utilizes higher-level structure and relationships
between the current pose and the surroundings of the human, Koppula
and Saxena (2013b) incorporate RGB-D input and object affordances
to make predictions about future human actions. In their work, a con-
ditional random field (CRF), which contains nodes for sub-activities
and objects and edges defining spatio-temporal relations, is augmented
with anticipated temporal segments to form an anticipatory temporal
conditional random field (ATCRF). The system then calculates a dis-
tribution over possible futures defined by many ATCRFs and uses it
for prediction. Related work by (Koppula and Saxena, 2013a) uses a
similar conditional random field formulation, but rather than only pro-
jecting possible temporal graph segments into the future, the proposed
method reasons on possible graph structures for the past as well. The
system samples some spatio-temporal structures close to the ground
truth, then makes randomized split and merge moves to explore the
segmentation space. A spatio-temporal structure is not required a pri-
ori, as the algorithm considers multiple possible segmentations to be
used for prediction.

Another method by Azorin-Lopez et al. (2014), which uses image
data for activity prediction and detection, eliminates the need for in-
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formation about timing or the sequence of events by representing in-
teraction data from RGB input with a normalized activity description
vector (ADV). This approach splits the image into a grid and calcu-
lates data on movements within each cell of the grid. The compact
ADV representation can then be used with various standard classifica-
tion methods.

As it is not always possible to have an external camera viewing the
scene, a unique approach by Ryoo et al. (2015) includes robot-centric,
first-person video with possible ego-motion as input for predicting hu-
man activities. This method, similar to the work by Ryoo, utilizes visual
features derived from RGB video to form integral histograms that rep-
resent activities. This method focuses on early prediction of activities
through detection of onset activities: subtle sub-activities that occur
just prior to the main activity being predicted. This process involves
learning onset signatures, which are characterizations of onset activ-
ities, and then utilizing these signatures and prior event history to
classify actions early in their execution.

While the ability to predict activity processes can provide task-level
information to task and motion planners, in the context of ensuring
safety in HRI, the ability to predict action goals (such as where a per-
son might reach toward) is also very important. This is especially true
during close-proximity collaboration, where simply slowing down and
stopping the robot via control-based methods (as discussed in Section
2) can lead to constant motion conflict and many stressful near-collision
situations. Mainprice and Berenson (2013) developed a framework that
utilizes labeled demonstrations of reaching motions to generate mod-
els for prediction of workspace occupancy. In this framework, separate
Gaussian mixture models (GMMs) are trained for each goal position for
a particular task and Gaussian mixture regressions (GMRs) are used
to generate representative reaching motions. Then, based on observa-
tion of the initial segment of a new reaching motion and the computed
GMMs and GMRs, the framework calculates the likelihood of occu-
pancy of each voxel within a simulated shared workspace. The robot
then selects actions and paths that minimize incursion into the regions
of the workspace expected to be occupied by humans.
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Recent work by Pérez-D’Arpino and Shah (2015) also focused on
predicting reaching locations based on human demonstrations, but with
a time-series analysis that utilizes multivariate Gaussian distributions
over the tracked degrees of freedom of the human arm defined for each
time step of the motion. The system uses the learned models to perform
Bayesian classification on the initial stages of motion in order to pre-
dict where a person will reach toward and to select robot actions that
minimize interference. In contrast to the GMM formulation used by
Mainprice and Berenson, the models take the sequence of points along
the motion trajectory into consideration, allowing for better discrim-
inability and higher classification confidence very early in the process
of the human’s motion. PÃľrez-D’Arpino and Shah also explore how
task-level prediction, incorporated into the framework as a prior in the
Bayesian formulation, could affect prediction results as a function of
the task-level prediction’s accuracy.

4.1.2 Discrete Action Labels as Input

Rather than reasoning on low-level sensor data directly, a second class
of human action prediction techniques utilizes task models to reason
on what actions have been taken, and then uses this data to inform
prediction. In these works, the purpose of the sensing platform is action
detection.

Dominey et al. (2008) presented a straightforward method of rea-
soning on actions performed, which incorporated an interaction history
to facilitate anticipatory robot behavior. The system, deployed for a
collaborative assembly task, compares current action sequences to pre-
viously observed sequences in order to determine whether the current
interaction is an instance of a previously observed task sequence. As
the robot correctly anticipates specific tasks multiple times, the system
adjusts a confidence parameter that modifies the anticipatory behav-
ior. When the robot anticipates an action for the first time, the system
predicts what the user will say when requesting the robot’s help. Even-
tually, as the system builds confidence in its prediction, the robot be-
gins to take initiative and perform the predicted action without having
received an explicit request to do so.
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Other works have considered probabilistic formulations for human
action prediction. A framework developed by Hoffman and Breazeal
(2007) utilizes a cost-based Markov process to anticipate human ac-
tions and select actions based on the robot’s confidence in the validity
of the prediction and risk. In this context, a “risky” robot action is
one that could result in a significant waste of time in the event that
it was not the proper action to take under the given circumstances.
Results from a comparison of the proposed framework with a reactive
agent in a simulated HRI scenario indicated that anticipation improved
best-case task efficiency based on metrics such as human idle time and
the amount of concurrent motion. Furthermore, anticipatory actions
yielded qualitative improvements in the degree of human satisfaction
with the robot as a teammate and perception of the robot’s contribu-
tion to the team’s success.

Another method of encoding a human-robot collaborative task with
a probabilistic framework and utilizing the results to anticipate human
actions was explored by Nikolaidis et al. (2013). In this work, the col-
laborative task was encoded as a Markov decision process (MDP), and
results from human subject experiments indicated that observations
of changes to the entropy rate of the derived Markov chain could be
utilized to encode the uncertainty of the robot about what action a
human team member will perform next.

An extension of the MDP, the mixed observability Markov decision
process (MOMDP), was later utilized by Nikolaidis et al. (2015). In this
work, the system learns user models automatically from joint-action
demonstrations by clustering action sequences and learning reward
functions for each cluster through inverse reinforcement learning. The
robot then uses these models to predict user types in order to then
predict users’ actions and execute appropriate anticipatory actions.
Results from this work indicated superior performance using the model
compared with manually controlling the robot via voice commands,
both with regard to quantitative metrics such as task execution time
and human idle time and subjective measures evaluated through
questionnaire responses.
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While a majority of the previously mentioned works focus on short-
term prediction of brief actions, Li and Fu (2014) developed a frame-
work for predicting actions of longer duration composed of constituent
actions with complex temporal compositions. In this framework, action
causality is addressed via implementation of a probabilistic suffix tree,
a variable order Markov model formulated to represent various order
Markov dependencies between constituent actions. The authors also
developed a method of extracting context cues derived from sequential
pattern mining through analysis of object-action co-occurrences. This
framework also incorporates a predictive accumulative function (PAF),
which determines the predictability of activities by learning from data.

4.1.3 Predicting Action Timing

The timing of an action is another important aspect of human action
anticipation. Work by Hawkins et al. (2013) utilized a probabilistic
graphical model in which the start and end time of actions are treated
as probabilistic variables conditioned on earlier events. This framework
also considers the uncertainty in sensing executed actions and variabil-
ity in timing among individual humans when making its predictions.
The described system was implemented during an assembly task in
which the robot attempted to minimize idle time by anticipating hu-
man actions and providing correct components at the most optimal
time.

The authors later extended this work (Hawkins et al., 2014) to
consider not only uncertainty in timing and action detection, but also
more complex task descriptions containing ambiguous task ordering.
Similar to their work mentioned above, this framework incorporated a
probabilistic graphical model and minimized a cost function based on
idle time. The results indicated that proper adjustment of parameters
describing confidence in the action detectors improved team perfor-
mance, as excessive confidence in the action detection caused the robot
to take potentially costly actions. By utilizing the proposed framework
with properly adjusted confidence parameters, the authors were able
to show that the system could achieve robust anticipation even with
noisy action detection.
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While predicting the timing of actions can improve task perfor-
mance, findings by Huang et al. (2015) indicated that this improve-
ment can come at a cost to user experience. In their experiment, the
researchers evaluated the effects of various handover strategies during
a human-robot collaboration task. By observing human teams, the re-
searchers derived techniques intended to better synchronize hand-overs
during the task based on the receiving person’s task demands and cur-
rent state. They found that the adaptive method, which incorporates
prediction of the user’s state and the above-mentioned techniques, re-
sulted in a balance between user experience and performance compared
with proactive and reactive baselines, which yielded poorer user expe-
rience and performance, respectively.

In Section 4.1, we discussed how low-level sensor input can be uti-
lized to reason on changes in sequences of image frames, relationships
between objects in a given scene, and human trajectories in order to
predict both activity processes and action goals. Additionally, human
actions can also be predicted by making use of the Markovian relation-
ship between constituent actions of a sequence, and utilizing formula-
tions such as MDPs or MOMDPs. Finally, we highlighted that prob-
abilistic methods for predicting action timing can aid in maintaining
safe human-robot collaboration, but that practitioners should carefully
consider the way in which integrating such predictions can affect user
experience.

4.2 Human Motion Prediction

Although the ability to predict human actions can be useful for generat-
ing safe robot motions and action plans, knowledge about what activity
will be performed or the end location a person is reaching or walking
toward does not provide information about which specific portion of a
shared human-robot workspace the human will occupy during the ex-
ecution of that predicted action. This additional information could be
leveraged to ensure safe robot motion by enabling the robot to reason
not only on the expected start and end locations, but on the entire
expected human motion.
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The basis of human motion prediction can be divided into two dis-
tinct categories: goal intent and motion characteristics. For the former,
action prediction can often serve to inform motion-level prediction by
inferring humans’ goals, which, in combination with an appropriate
motion model, can be used to anticipate how a human will move as he
or she walks or reaches toward the predicted goal. In the latter cate-
gory, motion prediction is not linked to predicted goals or actions, but
instead utilizes techniques such as analysis of biomechanical predictors
or reasoning on features of natural motion. These methodologies for
human motion prediction are summarized in Figure 4.2.

4.2 Human Motion 
Prediction 

4.2.1 Goal Intent 

Manipulation Navigation 

4.2.2 Motion Characteristics 

Figure 4.2: Diagram depicting the methods for human motion prediction discussed
in Section 4.2.

4.2.1 Goal Intent

When predicting human motion based on goal intent, the system in-
fers a human’s goal and predicts the path or trajectory he or she is
likely to take in order to reach that goal. This can include both smaller
manipulation movements and larger movements involving ambulatory
motion.

As goal prediction is necessary for this approach, several of the
action prediction methods described in Section 4.1 could be used for
this purpose. Some of the approaches mentioned earlier also predict
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the motion people could take while performing the predicted manip-
ulation actions. In the paper by Mainprice and Berenson (2013), the
system uses regressed motions derived via the GMR to compute swept
volumes that define human workspace occupancy during execution of
the predicted reach. In the work by Pérez-D’Arpino and Shah (2015),
on the other hand, prediction during a reaching motion is calculated
using multivariate Gaussian representations. In contrast to computing
a swept volume of the entire reaching motion, the models computed in
this work describe the mean and variance in the human’s hand posi-
tion for each of the possible goal positions at each time step, yielding
a prediction of human position as a function of time during the reach.

In the previously mentioned work by Koppula and Saxena (2013b),
once the system predicts an action, it utilizes Bézier curves to define
potential trajectories of the human hand while performing the action.
An extension of this work by Jiang and Saxena (2014) allows for more-
detailed prediction of human motion during action execution. In this
work, a low-dimensional representation of a high-dimensional model
of human motion is computed through a Gaussian process. The low-
dimensional description of the motion is then incorporated as latent
nodes in a CRF representation to form a model called a Gaussian pro-
cess latent conditional random field. By learning a two-way mapping
between the high- and low-level representations, this approach allows
for computationally tractable prediction of high-dimensional motion
while maintaining the ability to reason on relationships between peo-
ple and objects in the given scene. In addition to being able to predict
human motions with higher fidelity, the compact representation of mo-
tion allows for reasoning on the physical plausibility of actions, thus
improving prediction.

Another manipulation motion prediction technique, developed by
Mainprice et al. (2015), was specifically designed for reaching motions
performed during known, collaborative tasks based on inverse opti-
mal control. In this work, example data of two people performing a
co-manipulation task were collected via a motion capture system. The
gathered trajectories, along with feature functions encoding smoothness
and distance relationships, were then used as inputs for the path inte-
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gral inverse reinforcement learning (PIIRL) algorithm in order to pro-
duce the reaching motion cost functions. The approach uses these cost
functions and a human kinematic model with 23 degrees of freedom to
predict the human’s motion by iteratively replanning the motion with
the stochastic trajectory optimization for motion planning (STOMP)
algorithm. The authors found that the PIIRL algorithm is capable of
correctly recovering the cost functions for sampled motions created by
manually setting weights. Furthermore, the developed framework can
predict human motion more effectively than hand-tuned cost functions.

Goal-based human motion prediction can also be applied to larger
movements involving ambulatory motion, such as walking. Elfring et al.
(2014), for example, developed a two-step approach incorporating grow-
ing hidden Markov models (GHMMs) and the social forces method.
During the learning step of this approach, the system uses GHMMs to
learn typical human walking patterns from collected data, allowing for
continuous updating of the model as new data are collected. In the sec-
ond step, the system combines goals inferred from partial trajectories
using the learned GHMMs with a motion model based on the concept
of social forces from work by Luber et al. (2010) in order to predict
the path a human will take toward their goal based on static obstacles,
other people, and the physical constraints of the environment.

An earlier approach by Bennewitz et al. (2005) uses no explicit mo-
tion models; instead, learning is performed automatically by cluster-
ing human motions via the expectation maximization (EM) algorithm
and modeling these clustered motions using hidden Markov models
(HMMs). In this approach, natural resting places, or places where the
human’s motion slows or pauses, are identified from the data and used
as potential goal locations.

Ziebart et al. (2009), on the other hand, developed a goal-based hu-
man walking trajectory prediction method that leverages the assump-
tion that people move efficiently when navigating a space by modeling
human motions using maximum entropy inverse optimal control. One
key benefit of this approach is that the cost function it learns is a lin-
ear combination of features based on environmental obstacles, allowing
it to generalize well in the event that objects within the environment
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are moved to new locations or removed from the scene altogether. Fur-
thermore, the presented approach uses an incremental planner that
enables real-time deployment by developing cost maps without taking
prediction of motion into account, and then iteratively plans a robot
trajectory while simulating human motion.

4.2.2 Motion Characteristics

Some human motion prediction methods do not rely upon estimates of
goal locations, but make use of observations about how people move
and plan natural paths. This class of techniques encompasses a variety
of approaches, including discovery of likely motion progressions, use of
biomechanical predictors, consideration of features of natural motion,
and general unsupervised approaches for learning about how agents
move within an environment.

Takano et al. (2011) use motion capture data to encode skeletal
motion patterns as HMMs, which are then grouped via Ward clustering
to form a hierarchical structure called the “motion symbol tree.” The
system then learns sequences of motion symbols through the use of
Ngrams, forming a directed graph — the “motion symbol graph” —
that represents transitions between motion patterns, and thus causality
among human behaviors. The motion symbol graph is then used in
conjunction with current motion observations to predict future motion
patterns, represented as skeletal motions.

Xiao et al. (2015) used previously observed human trajectories to
train an SVM classifier that first decomposes the data into high-level
classes, such as wandering or stopping. The framework then forms clus-
ters within these classes using the partitioning around medoids (PAM)
algorithm, with a modified distance function that allows for better clus-
tering of similar, non-overlapping trajectories, especially with limited
movement. These clusters are then used to extract prototypes, which
are matched to observed partial trajectories to enable prediction. As
the clustering is performed in an unsupervised fashion, one key benefit
of this method is the ability to utilize new trajectories to further refine
and adapt prediction.
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An alternate approach by Unhelkar et al. (2015) utilizes biome-
chanical turn indicators for motion prediction. In this work, the au-
thors used a motion capture system to collect data of people walking
toward targets in a room. Results from statistical analysis showed that
indicators such as head orientation and body velocity normalized by
height can signal a human’s intention to turn prior to physical perfor-
mance of the turn itself. This allows for prediction of turning motions
without necessarily predicting a goal location. The authors also applied
these turn indicators within a goal-based prediction framework based
on the previously mentioned work by Pérez-D’Arpino and Shah (2015)
to show that these indicators provide a signal strong enough to be used
for motion prediction. It is important to note that the biomechanical
turn indicators validated in this study can be incorporated into other
prediction frameworks as well.

The final step taken by the authors was to test the utility of the pre-
diction in a dynamic environment via a closed-loop simulation in which
a robot planned its motions according to predictions about human mo-
tion. They found that by reasoning on the predicted human motion,
the robot was able to take paths that avoided motion conflicts; the
resulting robot path plan would allow for safer and more comfortable
co-navigation of the space.

While the above works consider the motion of the human indepen-
dently of other agents in the environment, one interesting and useful
insight is that the trajectory of the robot affects that of the human.
Based on this concept, Kuderer et al. (2012) used demonstrations of
human motion to develop a method of motion prediction that learns
joint trajectories. By analyzing trajectories during human-human inter-
action, the researchers investigated which features of walking motion
the system could use to learn how to characterize and predict typical
human walking behavior. The model, based on the principle of maxi-
mum entropy, considers features including the amount of time needed
to reach a goal, acceleration profiles, walking velocity, and collision
avoidance behavior. This approach, based on the physical aspects of
the trajectory (as opposed to a Markov model), considers how people
reason over these features when planning joint trajectories. (Humans
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might, for example, prefer to maintain a steady walking speed, try to
reach their goals quickly, or attempt to minimize proximity to obstacles
and other agents.) The developed method was validated both in simu-
lation and in a physical environment, indicating that human trajectory
prediction based on consideration of joint trajectories can successfully
guide a robot in a natural and socially compliant way.

Interaction with other agents in the environment is not the only
context of a scene that can be utilized for prediction, however. Within
the computer vision community, a method developed by Walker et al.
(2014) utilizes an unsupervised, data-driven approach for visual pre-
diction using a static image. In this work, the system learns relation-
ships between subsections of the image to form a context-based Markov
model, such that no prior assumptions about agents and activities are
necessary. This work provides a visual prediction of the future appear-
ance of a scene by projecting the position and appearance of subsec-
tions in that scene. While this approach was not specifically designed
for human motion prediction, the unsupervised, context-based method
developed here could easily be applied to this domain, as human move-
ment within an environment is also influenced by the context of the
scene.

While prediction of human actions can be useful for maintaining
safety in HRI, in Section 4.2, we discussed how predicting likely hu-
man motions yields additional information that robot path and motion
planners can leverage. In structured environments, robots can utilize
prediction of likely goals in combination with various motion models to
predict the path a human will take toward that goal. In applications
lacking clear goal locations, or for which action prediction is difficult or
impractical, prediction based on motion characteristics is appropriate,
with relevant characteristics including biomechanical indicators of mo-
tion, features of natural motion, or patterns of motion within a scene.

4.3 Prediction of Robot Motions and Actions

Human-robot collaboration is a two-way interaction; as such, human
agents’ ability to predict the actions and movements of a robot is as
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essential as the ability of a robot to predict the behavior of humans. By
taking the predictability of robotic teammates into account, researchers
can develop both implicit and explicit methods of conveying robot in-
tent, allowing human teammates to accurately predict the behavior of
their robotic coworkers. These topics are summarized in Figure 4.3.

4.3 Prediction of Robot                 
Motions and Actions 

4.3.1 Explicit Cues 4.3.2 Implicit Cues 

Animation Principles Mathematical 
Formulations 

Figure 4.3: Diagram depicting the types of cues that can aid in prediction of robot
motion, as discussed in Section 4.3.

4.3.1 Explicit Cues

One method of making robot behavior more predictable to human
teammates is explicit communication of intent, where the robot di-
rectly communicates its planned actions and motions through visual
and auditory cues. In work by St. Clair and Mataric (2015), for exam-
ple, verbal feedback from the robot was provided while coordinating a
joint activity between a human and robot. Team coordination via robot
task control and speech feedback was formulated as a planning problem,
with the task environment represented as a Markov decision process. In
this approach, the system observes a human’s actions, infers his or her
strategy, and reasons about the compatibility of possible robot actions
with this strategy. The robot then provides verbal feedback to the hu-
man about the actions it will take (self-narrative feedback) and which
actions the human should take (role-allocative feedback), and provides
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commentary on success and failure during task execution (empathetic
feedback). In the proof-of-concept joint task, utilizing verbal commu-
nication to convey robot intent in addition to other forms of feedback
led to faster task execution and more positive ratings of the robot as a
teammate.

In addition to speech, Lallee et al. (2013) also studied the effects of
communicating joint plans via the robot’s gaze. In this work, a human
and robot performed a joint task in which they moved a box to uncover
an object, and then retrieved the object. The study analyzed the effects
of a joint plan, directed gaze, and speech by assessing how the presence
or absence of these elements influenced proper turn taking, motion
conflicts, and the number of errors occurring during task execution.
The authors found that use of a joint plan, gaze, and speech resulted
in the best team performance; that directed gaze worked well in the
presence of a joint plan; and that speech functioned well even without
the use of directed gaze.

As it may not always be practical to use speech or gaze direction to
convey robot intent, researchers have developed other methods of mak-
ing robot motion more predictable. For example, Szafir et al. (2015)
investigated the use of an LED array to communicate the motion of
flying robots to humans within a shared workspace. After investigating
and applying proper constraints on flying robot motion (such as main-
taining constant altitude unless taking off or landing) based on human
expectations, this study specifically evaluated the speed and accuracy
of human prediction about the motion of a small robotic aerial vehicle
using four distinct settings for the circular LED array.

The authors found that participants rated the robot as a bet-
ter potential work partner when it incorporated any of the assessed
LED-based communication settings, compared with the absence of any
signaling method. Also, three of the four evaluated communication
modes yielded better performance according to quantitative metrics
of prediction response time and accuracy. The results also indicated
that design trade-offs between occlusion, precision and generalizabil-
ity must be taken into consideration when selecting a communication
mode.
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The projection system by Vogel et al. (2013) described in Section
2.1 offers another method of explicit visual feedback for robot motion
prediction. By visually projecting the safety zone used to stop the robot
and adjusting its extents via a commanded robot velocity, the projected
shape of the safety zone could provide users with an explicit cue as to
the direction in which the robot will increase its velocity. While this
aspect of the system was not specifically studied in the paper by Vogel
et al., it is plausible based on the results from preceding studies that
the predictability of robot motion would increase with the use of the
projection system.

4.3.2 Implicit Cues

While direct, explicit communication can be an effective method of con-
veying robot intent, implicit cues can also communicate future robot
motions and actions. Using our understanding of human-human team-
ing as a basis, the benefits of implicit communication of intent are read-
ily apparent, as one would not expect a coworker to always explicitly
communicate where they are about to reach or move toward. Instead,
people convey intent through subtle cues embedded in the ways they
perform their motions.

Applying this concept to HRI, Takayama et al. (2011) investigated
the use of animation principles to aid in the readability of robot intent.
In this study, participants observed simulated robot scenarios and were
asked to interpret the actions taken by the robot. The authors found
that use of forethought — expressive movements, such as the robot
changing its height to acknowledge the human, or directing its gaze at
the human and then at an object about to be manipulated — resulted
in a greater degree of confidence in participants’ interpretation of the
robot’s actions. Forethought also led to participants rating the robot
as more approachable and appealing. Participants also considered the
robot to be smarter when it exhibited a reaction to the success or failure
of the task it was performing.

While these animation principles improved the interpretation of
activities upon completion in the study by Takayama et al., Szafir
et al. (2014) demonstrated that animation principles can also improve
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the predictability of robot movement. In particular, Szafir et al. fo-
cused on implicit communication of motion intent for assistive small
robotic aerial vehicles through animation-inspired modification of mo-
tion primitives. These motion primitives, such as hover or cruise, were
modified via three manipulations: arcing (moving in arcs instead of
straight lines), anticipation (moving slightly in reverse before moving
forward), and easing (gradually slowing down from or accelerating to
full speed).

The effectiveness of these motion primitive modifications was eval-
uated in two experiments: In the first, participants observed anima-
tions of virtual robots and were asked to anticipate the robots’ motion
intentions. The response time and accuracy of these predictions was
measured to determine which combinations of motion primitive modi-
fications resulted in optimal predictability. The researchers found that
a combination of easing and anticipation, as defined above, demon-
strated the best potential for increasing prediction accuracy, but that
anticipation increased trajectory length and yielded slower response
times due to the slight reverse movement, highlighting the trade-off
between response time and accuracy when using this motion manipu-
lation technique. In the second study, Szafir et al applied motion ma-
nipulations to actual robotic aerial vehicles, and evaluated the effects of
these manipulations on high-level interactions. They found that, based
on questionnaire responses, participants rated the robotic aerial vehicle
higher in terms of usability, safety, and naturalness when it utilized the
motion manipulations.

Dragan et al. (2013) also investigated how robot motion could im-
plicitly convey intent, but approached this problem through math-
ematical definitions of predictability and legibility of robot motion.
Their paper discussed how legible (intent-expressive) and predictable
(expected) motions can differ substantially — and are, in fact, often
contradictory. To evaluate the validity of the developed mathematical
formulations, the authors performed experiments in which participants
predicted what goal a robot or person was reaching toward when using
predictable or legible motions. The predictability of the motions was
evaluated via questionnaires and evaluation of participants’ drawings
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of expected robot paths, while motion legibility was evaluated by mea-
suring the length of time it took participants to feel confident in their
predictions of which goal the robot was reaching toward. In general,
trajectories that scored high based on the mathematical representation
of legibility were more legible, but that trajectories with a high math-
ematical predictability were not always rated as more predictable by
the participants. Dragan et al. attributed the latter to the fact that
participants had a wide variety of expectations of how the robotic arm
would move toward its goal, highlighting the importance of factoring
human expectations into robot motion planning.

In later work, Dragan et al. (2015) analyzed the effects of legible and
predictable motion on the quality of human-robot collaboration. In this
study, participants were required to infer the intent of a robot in order
to efficiently complete a collaborative task. The researchers compared
three types of robot motion: predictable, legible, and functional (motion
that reaches the goal and avoids obstacles without taking predictability
or legibility into consideration). The results indicated that functional
motion alone was not sufficient for fluent HRI, and that legible mo-
tion, while less efficient than functional motion in terms of trajectory
length, led to more efficient interaction as measured by coordination
time. Participants also reported via questionnaire responses that they
preferred legible motion to functional motion.

Overall, results from the works discussed in Section 4.3 have in-
dicated that both explicit and implicit cues can effectively convey a
robot’s intent. Techniques in the former category rely upon modalities
such as speech, gaze direction, or light signaling to make the robot’s
intent known directly. Works within the latter category, on the other
hand, attempt to make the robot predictable through more implicit
means — either by modifying motions according to animation prin-
ciples or mathematically formulating motion planning to optimize for
legibility. If a robot utilizes the presented methods, making its behavior
easier to predict, humans working with that robot can more effectively
plan their own motions so that they remain safer.
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4.4 Summary

In this part of the monograph, we demonstrated the utility of prediction
as a method for safe human-robot interaction. We began by discussing
works focused on predicting the most likely human actions and their
timing, which can serve as inputs to robot path and motion planners
such as those described in Section 3. The subsequent section discussed
methods for predicting the actual path a person will take based on both
the predicted goals of that person and characteristics of natural human
motion.

By actively predicting the human’s actions and motions, a robot
can build upon the motion planning approach depicted in Section 3
and produce safe motions proactively, instead of relying on frequent
replanning. As discussed earlier, this is especially useful for highly dy-
namic settings in which simply replanning each time the environment
changes is impractical. This can be both due to the inability to produce
new plans quickly enough, as well as paths based on constant replan-
ning being unsatisfactory (in terms of both task efficiency and safety)
given the potential for getting stuck in local minima. By incorporating
prediction knowledge and planning in a proactive manner, it becomes
possible to avoid these downfalls.

As we noted in the previous section, facilitating human predic-
tion of the robot’s behavior can also improve safety in HRI. Through
the use of either explicit or implicit cues, the robot can make its in-
tended goals and motions clearer to co-located humans, which in turn
facilitates humans’ ability to select actions and motions that maintain
safety.

While prediction has been shown to be useful for ensuring safe HRI,
it is important to note that the efficacy of this approach is directly
related to the accuracy of the relevant predictors. (In the previously
mentioned work by Pérez-D’Arpino and Shah (2015), for example, the
authors showed that incorporating a low-confidence task-level predictor
into motion-level prediction can actually deteriorate prediction perfor-
mance.) Consequently, it is imperative that a practitioner choose an
appropriate predictor for a given task and environment, and that he or
she evaluate the efficacy of that predictor. Furthermore, a practitioner
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can also utilize control-based safety methods, such as those highlighted
in Section 2, as a safeguard against incorrect predictions.



5
Safety Through Consideration of Psychological

Factors

The maintenance of physical safety often dominates discussion of safety
in HRI; however, ensuring psychological safety is also of critical impor-
tance, as we discussed in Section 1.1. Maintaining psychological safety
involves ensuring that the human perceives interaction with the robot
as safe, and that interaction does not lead to any psychological discom-
fort or stress as a result of the robot’s motion, appearance, embodiment,
gaze, speech, posture, social conduct, or any other attribute. Results
from prior experiments have indicated that maintaining physical safety
by simply preventing collisions as they are about to occur can lead to
low levels of perceived safety and comfort among humans (Lasota and
Shah, 2015). Therefore, maintenance of physical safety alone cannot
ensure safe HRI.

One of the primary methods of ensuring psychological safety during
human-robot interaction is appropriate adjustment of robot behavior.
Such behavioral adjustments can be split into two categories: those
based on robot features and those based on social considerations. Work
within the former category involves adjustment of various parameters
of the robot’s motion, such as speed, acceleration, or proximity to the
human, and also investigates how to properly adjust behavior based on
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the robot’s appearance. Work in the latter category, on the other hand,
is concerned with discovering which social rules observed in human-
human interaction are important to follow during HRI, and the impact
of factors such as culture and personality traits.

Although adapting robot behavior is important for maintaining
psychological safety, it is also necessary to evaluate the effectiveness
of these adjustments in a principled way. Toward this objective, re-
searchers have developed three tools for assessing psychological safety:
questionnaires, physiological metrics, and behavioral metrics. Each of
these assessment methods possesses its own benefits and drawbacks,
making it imperative to understand which approach should be used
under what conditions.

All of these topics, including robot behavior adaptation and assess-
ment, are discussed in this section of the monograph, as depicted in
Figure 5.1.

5. Consideration of 
Psychological Factors

5.1 Robot Behavior 
Adatptation

5.1.1 Robot Features

5.2.2. Social 
Considerations

5.2 Assessment of 
Psychological Safety

5.2.1 Questionanires

5.2.2 Physiological 
Metrics

5.2.3 Behavioral  
Metrics

Figure 5.1: Diagram depicting methods of assessing and potential factors influenc-
ing psychological safety, as discussed in Section 5.
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5.1 Robot Behavior Adaptation

Although perceived safety and comfort were not the primary objec-
tives of all the works mentioned in the preceding sections, a significant
number take psychological safety into consideration by adjusting robot
behavior specifically to make interaction more comfortable for humans.
For example, the trajectory-forming strategy developed by Broquere
et al. (2008) mentioned in Section 2.1 limits the jerk, acceleration, and
velocity of the robot. The authors of that work noted that maintaining
comfortable interaction is one of the major constraints on controllers
developed for HRI.

In the work by Sisbot et al. (2010) outlined in Section 3.1, the au-
thors combined several methods to support comfortable HRI and noted
that physical safety alone is not sufficient for acceptable HRI, adding
that the robot must also avoid any actions that might induce fear, sur-
prise, or discomfort among humans. Authors expressed a similar sen-
timent in another paper focused on developing a safe and comfortable
manipulation planner (Sisbot and Alami, 2012).

The motion planner developed by Mainprice et al. (2011), as out-
lined in Section 3.1, incorporates HRI constraints to generate motion
that result in comfortable reactionary human motions, but focuses
specifically on the physical comfort of the interaction — for example,
how far the human must travel from a resting position to a proposed
reach location, or how close he or she would be to exceeding biome-
chanical limits were they to do so.

While the aforementioned authors took psychological safety into
account within their work, there also exists a body of research with the
primary focus of evaluating how robot behaviors affect psychological
safety factors, both in terms of studying and adjusting robot features,
as well as understanding the impact of social factors.

5.1.1 Robot Features

Researchers across various fields of study have shared the concerns
and sentiments regarding psychological safety expressed in the above
works, leading to the study of the possible negative psychological effects
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of numerous aspects of robot behavior. Arai et al. (2010), for example,
assessed the influence of robot speed, separation distance, and advance
notice of motion on human operator stress. Through results obtained
from physiological sensing and questionnaires, the authors found that
all three of the above factors affected operator stress: specifically, op-
erators exhibited more stress with shorter separation distances (1.0m)
compared with longer distances (2.0m), faster robot speed (1000mm/s)
compared with slower speeds (500mm/s and 250mm/s) and in the ab-
sence of advance notice of motion compared with receiving notice from
the robot prior to movement.

Koay et al. (2006) investigated the influence of similar robot fea-
tures, but focused on real-time reporting of discomfort via a hand-held
device. Furthermore, the study evaluated human discomfort in live, un-
constrained scenarios, rather than predefined interactions. Separation
distance once again played a factor, with a majority of participants
reporting discomfort at distances of less than 3m — with the greatest
level of discomfort within 1-3 m. Participants also exhibited discomfort
when the robot blocked their path or was on a collision course with
them, particularly if the distance of separation was less than 3m.

Kulić and Croft (2006) also tracked participants’ psychological state
in real time in their work, but with the use of physiological sensing and a
fuzzy inference engine. They compared two types of motion planners: a
simple potential field planner and a safe planner that included a danger
criterion, and performed assessments via physiological measurements
and questionnaire responses. The authors found that robot speed had
a significant effect on participants’ levels of surprise, anxiety, and calm,
and that use of the safe motion planner resulted in lower levels of
anxiety and surprise and a greater degree of calm among participants.

In addition to evaluating the effects of robot speed and distance,
Butler and Agah (2001) used questionnaires to study the effects of robot
body design on participants’ levels of perceived comfort. The authors
evaluated these factors during execution of several robot behaviors, in-
cluding physically approaching a person, avoiding contact with a person
while passing them, and performing non-interactive tasks in proximity
to a person. The researchers found that faster robot movement speeds
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made people uncomfortable, even in the absence of a collision; they
also reported that a larger robot body led to lower comfort ratings in
nearly all cases, suggesting that the robot’s size and form factor can
influence psychological safety.

Fischer et al. (2014) investigated human comfort during HRI in the
context of acoustic communication. In their experiment, a robot at-
tempted to pass a human participant from behind while either making
no sound or emitting beeps of either rising or falling intonation. The
experiment revealed significant differences between participants’ com-
fort ratings under the three conditions, with participants reporting the
highest comfort levels when the robot beeped with a rising intonation.

5.1.2 Social Considerations

Several researchers have focused on how a robot’s social behavior affects
psychological safety. This involves discovering which social behaviors
observed during human-human interaction are important for HRI, how
failing to follow social conventions during HRI impacts psychological
safety, and how personality traits, culture, and demographic factors can
affect these considerations. Learning this information allows for more
appropriate adjustment of robot behaviors, ensuring safer interaction.

Joosse et al. (2013), for example, conducted human-subject exper-
iments in which the agent type (human or robot) and approach speed
(slow or fast) were varied during an invasion of a participant’s per-
sonal space by a robot. The authors found that humans were highly
sensitive to the degree to which robots obeyed social norms, and that
people’s attitudes and expectations toward robots were not necessarily
the same as those they had toward other people; indeed, people reacted
more strongly to robots invading their personal space than humans.

Feil-Seifer and Matarić (2011) explored one method of adherence
to social norms through modification of robot behavior: using human
demonstrations to build a model of proper following behavior for a
robot leading a person to a goal. Relative distances between the hu-
man, robot, and goal in the observed human demonstrations were used
to fit a GMM to formulate the model. The authors then used this
model to enhance the robot’s motion planner, which they then tested
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on various human following behaviors to show that the modified plan-
ner learned to adjust the robot’s speed appropriately. In follow-up work,
the authors evaluated the modified motion planner from a bystander’s
viewpoint by showing participants a two-dimensional, virtual represen-
tation of a leader and follower (Feil-Seifer and Matarić, 2012). The
results indicated that when the modified motion planner was used,
participants rated the behavior as “leading” more and “ignoring” and
“avoiding” less, suggesting that the intended social behavior was more
clearly conveyed with the modified planner.

In addition to proxemic distance, Kim and Mutlu (2014) investi-
gated how “power distance” (the role of the supervisor vs. the subor-
dinate) and “task distance” (cooperative vs. competitive performance)
can affect user experience and comfort during HRI. In their first study,
which involved manipulating power and proxemic distances, the au-
thors found that user experience improved when a robot in a super-
visory role was in closer physical proximity, while a robot acting as a
subordinate was further away. The authors also reported that task per-
formance worsened when the robot was physically near to the human,
regardless of power distance. In a second study, the authors manipu-
lated task and proxemic distances and found that user experience was
better when competitive robots were physically close and cooperative
robots were further away.

Takayama and Pantofaru (2009) wrote that robot behavior design-
ers should also consider people’s personalities and experiences. The au-
thors determined that prior experience with robots, as well as pet own-
ership, reduced the physical distance people maintained with robots
during interaction. Furthermore, they observed significant effects of
personality traits on behavioral and attitudinal measures, as well as
gender-based differences. The authors wrote that in order for HRI to
be comfortable, the robot’s proxemic behavior should be a function of
each person’s prior experience with robots, as well as his or her per-
sonality traits and gender.

In contrast, Mumm and Mutlu (2011) investigated how the robot’s
“personality,” including likability and gaze behavior, affected physical
and psychological distancing (i.e., how much information the human
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discloses to the robot). In the authors’ experiment, the robot was made
to appear either rude and selfish or pleasant and empathetic, while gaze
direction was altered to be either inclined toward or averted from the
participant’s face. They found that participants who did not like the
robot maintained greater physical and psychological distances when the
robot gazed at them. Similarly to the results of the work by Takayama
and Pantofaru, these findings indicate that proxemic behaviors should
be a function of personal characteristics, such as gender and prior expe-
rience with robots, but also that robots must be liked by their human
partners in order to enable comfortable close-proximity interaction.

While proxemic preferences are a function of personal charac-
teristics, these preferences can shift over time and can even vary
from culture to culture. In a 6-week study, Walters et al. (2011)
assessed participants’ proxemic preferences when interacting with
robots in homelike environments. They found that the majority of
adaptation of preferred interaction distances occurred within the first
few sessions, then stabilized afterwards. They also wrote that robot
malfunctions led to greater preferred distances, even if a safety concern
was not reported, and that humans approached the robot more closely
themselves than they allowed the robot to approach them when in a
physically constrained area.

Research has shown that cultural differences also play a role in
proxemic preferences. The seminal work by Hall (1966) indicated that
people of different cultures have significantly different standards for
maintaining personal space, and Joosse et al. (2014) empirically demon-
strated that such standards also manifest for HRI. In that study, the
authors observed that participants from different cultures (namely, the
United States, China, and Argentina) maintained different standards
for appropriate approach distances for a robot moving toward a small
group of people.

As proxemic preferences and other social standards can vary among
cultures and change over time, it is important for robots to be able to
reason about these conventions and adjust their behavior appropriately.
Frameworks such as the one developed by Kirby et al. (2009) can be
quite useful for this purpose: in this work, social conventions are treated
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as constraints in a planning problem, which is solved to select socially
acceptable paths for the robot. The framework allows for any number
of conventions to be included, and the strengths of these conventions
can be tuned appropriately to capture and enforce personal or cultural
standards.

5.2 Assessment of Psychological Safety

In order to determine whether certain robot behaviors negatively af-
fect psychological safety, and to ensure that the proposed behavior
adaptations are capable of mitigating these negative effects, it is neces-
sary to assess psychological safety in a principled manner. Assessments
of psychological safety can be split into three main categories: ques-
tionnaires, physiological metrics, and behavioral metrics. These three
distinct methods of assessment differ in key qualities, such as whether
or not they can be collected in real-time, whether they are subject to
interpretation or purely objective, and how intrusive or disruptive the
measurement can be to the human. These techniques represent valu-
able tools for researchers to ensure that psychological safety is properly
taken into consideration in HRI.

5.2.1 Questionnaires

Several validated questionnaires developed in prior work have proven
useful for the assessment of psychological safety. For example, Bart-
neck et al. (2008) developed the “Godspeed” questionnaire, a carefully
designed set of questions based on prior work in HRI that allows re-
searchers to measure several key HRI metrics on a standardized, vali-
dated scale. Perceived safety is one of five major dimensions addressed
by the questionnaire, along with anthropomorphism, animacy, likeabil-
ity, and perceived intelligence.

In an attempt to quantify humans’ satisfaction during HRI, Nomura
et al. (2006) developed the Negative Attitude toward Robots Scale
(NARS). As its name suggests, this psychological scale measures the
negative attitudes people hold toward robots. It is composed of three
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sub-scales assessing “situations of interaction with robots,” “the social
influence of robots,” and “emotions in interaction with robots.”

More recently, Joosse et al. (2013) developed BEHAVE-II, a method
that utilizes both subjective and objective metrics to assess human re-
sponses to robot behavior. This approach considers two types of re-
sponses: attitudinal and behavioral. For the former, the attitude of the
person toward robots and their level of trust, as well as the robot’s
human-likeness and attractiveness, are assessed via questionnaire re-
sponses. For the latter, people’s behavioral responses, such as facial
expressions or the number of steps they took to move away from a
robot, are analyzed. Together, these two metrics form an overall pic-
ture of a human’s attitude toward the robot during HRI.

In addition to developing and validating new questionnaires and
metrics specifically designed to assess perceived safety and comfort,
researchers have also incorporated such questionnaires into their ex-
periments. Several works mentioned in the preceding sections included
questions about perceived safety and comfort within their assessments,
even if this was not the main topic of the research.

In the evaluation of the framework by Sisbot et al. presented in
Section 3.1, Dehais et al. (2011) assessed human comfort and per-
ceived safety through subjective questionnaire responses and physio-
logical measurements. Similarly, Morales et al. (2015) evaluated partic-
ipants’ senses of perceived comfort and pleasantness with regard to the
motion plans of an autonomous wheelchair via questionnaire responses.
In another paper mentioned in Section 4.3, Szafir et al. (2014) reported
that small aerial vehicles utilizing motion manipulations aimed at con-
veying intent were rated as safer by participants than vehicles that did
not incorporate motion manipulations.

Several of the papers mentioned in the previous section addressing
behavioral adaptation also incorporated questionnaires to assess psy-
chological safety. In the experiment by Butler and Agah (2001), for
example, the authors used a Likert scale questionnaire to assess partic-
ipants’ comfort as the robot’s speed, distance from the participant, and
body design were manipulated under various conditions. In the acoustic
communication experiment by Fischer et al. (2014), the authors used
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questionnaires to measure responses to different intonation contours.
These questionnaires required participants to rate their feelings about
the interaction according to seven adjectives: “angry,” “comfortable,”
“cooperative,” “relaxed,” “uncomfortable,” “warm,” and “afraid.” In
the work by Kim and Mutlu (2014), the survey given to the partici-
pants contained questions not only about comfort, but also other im-
pressions, such as whether interacting with the robot was “annoying”
or “confusing,” for example.

5.2.2 Physiological Metrics

While questionnaires can be a useful method of assessing psychological
safety, this method also has certain drawbacks. Questionnaire items
are generally open to interpretation, which can lead to unexpected bi-
ases and noise among responses. Furthermore, questionnaires can be
impractical if perceived safety is to be tracked outside of controlled
experiments, either for online behavior adjustment or logging for fu-
ture analysis. As a result, researchers have also considered analysis of
physiological metrics as a potential method of assessing psychological
safety during HRI.

Kulić and Croft (2006) devised a study to determine whether phys-
iological signals are suitable for online inference of the affective state of
a human during HRI. As discussed in Section 5.1, the authors created
a fuzzy inference engine for estimating the affective state in response to
robot motions. The system utilizes various physiological sensors, and
through analysis of the signals emitted by these sensors, the authors
selected five features for study: heart rate, heart rate acceleration, skin
conductance response, rate of change of skin conductance, and corru-
gator muscle response. Robot speed, motion type, and motion planning
style were varied during the experiments in order to test the inference
engine. Overall, the inference engine was found to work well for esti-
mating affect, particularly when a participant’s physiological response
was greater.

In the previously mentioned work by Arai et al. (2010), the authors
also evaluated human operator stress when working with robots via
physiological sensing and subjective assessment. They studied the in-
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fluence of robot speed on human operator stress, as well as the effects
of separation distance and advance notice of robot motion, by observ-
ing the maximum amplitude and rate of spikes in the skin potential
response (SPR) signal, as well as through responses to the semantic
differential (SD) questionnaire, which assessed levels of fear, surprise,
and discomfort. They found that all of the tested robot motion param-
eters influenced the SPR signal, indicating that robot speed, advance
notice of robot motion, and separation distance are all important fac-
tors to consider when assessing psychological safety. Furthermore, while
significant differences emerged for the SPR signal as a function of ex-
periment conditions, the same was not always true for the SD scores,
suggesting that some stresses encountered during HRI may not be con-
sciously perceived by the human.

5.2.3 Behavioral Metrics

Another method of assessing psychological safety is through observa-
tion of human behavior in response to a robot. Similarly to physiolog-
ical metrics, this method does not rely upon self-reported information,
which is susceptible to variations in interpretation. One advantage of
utilizing behavioral metrics over physiological signals is that physio-
logical signals are often difficult to analyze, as a variety of emotions
can affect them. (Skin conductance, for example, can increase when
a person feels frightened or happy (Albert and Tullis, 2013, p. 177).)
Carefully selected behavioral metrics can be a more direct proxy for
perceived safety and comfort.

In the work by Takayama and Pantofaru (2009) mentioned earlier,
for example, the authors conducted a study to evaluate the personal
factors that can affect proxemic behaviors in HRI. This experiment in-
corporated various human-robot approach scenarios, with some but not
all of the participants reporting prior experience with robots or pets.
The robot’s behavior varied such that it gazed at the participant’s face
during some scenarios, but not others. Interaction was evaluated ac-
cording to behavioral metrics, including the average and minimum dis-
tance the person maintained from the robot during interaction, as well
as attitudinal metrics of perceived safety as indicated by questionnaire
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responses. The researchers also took a number of personality traits and
demographic measures (also derived from questionnaire responses) into
consideration.

The previously mentioned work by Mumm and Mutlu (2011) also
considered personal differences among humans while evaluating prox-
emic behaviors during HRI, grounding the work in the context of in-
terpersonal distancing models for human-human interaction. In this
study, the researchers manipulated the likeability and gaze behavior of
the robot. The dependent behavioral measures of the study included
metrics of both physical and psychological distancing. The former in-
volved tracking how far the person chose to be from the robot, while
the latter measured how much information a participant was willing to
disclose to the robot.

One interesting example of making use of behavioral metrics of
psychological safety is the work by Walters et al. (2011), discussed
earlier. In their long-term proxemics study, the authors not only tracked
how closely people preferred to approach the robot themselves, but also
had the robot approach participants and gave them the ability to move
the robot forward or backward to their preferred distance of separation.

5.3 Summary

In this section of the monograph, we discussed methods and tools for en-
suring psychological safety during human-robot interaction. In contrast
to the preceding sections, which addressed prevention of unwanted con-
tact or collisions (physical safety), the methods presented in this section
dealt with ensuring that interaction also feels safe and is not stressful.

We began by discussing how robot behavior adaptation can improve
psychological safety. First, we summarized works that investigated the
impact of features of the robot’s motion, such as speed or the degree
of distance maintained from the human, as well as the effect of the
robot’s physical appearance. Later, we highlighted the influence of so-
cial aspects on HRI, including how social conventions of human-human
interaction translate into interaction with robots, the impact that vio-
lation of social standards by robots has on psychological safety, and the
impact of personality traits, experience, and culture on these issues.



326 Safety Through Consideration of Psychological Factors

One of the key limitations of robot behavior adaptation is that
many of the studied factors affecting psychological safety interact with
one another in complex ways, making it difficult to provide concrete
guidelines for parameters such as speed or the distance between the
human and robot. The mentioned works allow for understanding of
existing trends (e.g., the finding that increasing robot speed increases
stress among human co-workers), but not necessarily concrete values
for the parameters in question. The actual speed that a robot should
be limited to, for example, can be a function of that robot’s size and
appearance, what object the robot is holding, and the human’s level of
prior experience with robots. While the works described here provide
valuable insight into the influences of each of these factors, they are
not necessarily independent.

One key limitation exists with regard to incorporating knowledge
about personality traits or human experience with robots: in many HRI
scenarios, obtaining such information is impractical. Take, for example,
a robotic mall guide: while knowledge of a human’s prior experience
with robots would allow the guide to be physically closer to that human,
the robot has no way of knowing how much experience with robots each
person at the mall has. Consequently, this type of adaptation is limited
to domains in which information about prior experience and personality
traits can be obtained in advance.

After describing potential robot behavior adaptations, we discussed
several potential methods for assessing psychological safety, which is
necessary both for knowing when to adapt robot behavior and to ensure
that such adaptations have the desired effect. Specifically, we addressed
the development and use of questionnaires, utilizing physiological sig-
nals to estimate the psychological state of the human, and tracking
human behavior in response to the robot.

Despite the limitations noted above, the research conducted on un-
derstanding the impact of the robot’s motion and behavior on the psy-
chological safety of nearby humans, as well as the various tools for
assessing psychological safety in a principled manner, are invaluable
for ensuring the overall safety of HRI.



6
Future Directions

The large body of work represented here suggests a substantial research
effort related to safety during human-robot interaction. Interestingly,
safety is not always explicitly mentioned as an application of these
works; nonetheless, the inclusion of research relevant to safety in HRI
across such a large variety of works highlights the importance of this
topic. The presented techniques provide a substantial tool set that can
be utilized to ensure safe HRI.

Safety in HRI remains an open problem, however, as many of the
mentioned sub-fields are still relatively young. Therefore, our aim for
this section is to outline potential directions for future research that
would further advance safety in HRI.

6.1 Expanding Post-Collision Control Methods

A majority of the work concerned with improving safety through con-
trol has focused on collision prevention or limiting the velocity or energy
stored within the system. Minimizing these parameters at all times,
however, might be too conservative, causing a robot to become un-
necessarily inefficient. Furthermore, in many potential close-proximity
applications of HRI, strictly employing collision prevention may be un-
realistic, as prevention methods primarily rely upon exteroceptive sen-

327



328 Future Directions

sors, which are susceptible to inaccuracy due to issues such as occlu-
sions, variable lighting conditions, or reflections. A momentary break-
down of perception algorithms due to such inaccuracy could prevent
pre-collision systems from engaging.

The aforementioned drawbacks provide strong motivation for the
use of post-collision control safety methods. Compared with pre-
collision methods, however, there has been substantially less focus on
this topic throughout the existing literature. The field would benefit
from additional novel tests and methods assessing three areas: impacts
at a wider array of contact locations not previously studied; collisions
in nonstandard configurations; and intentional, collaborative contact
between humans and robots.

With regard to the first area, an even more systematic approach
than those used previously would further expand our knowledge of po-
tential injury following human-robot collision. Much of the work con-
ducted thus far has been related to impacts at and injury of the head,
neck, and chest, but there has been less focus on impact at the back
or legs. Given the possible dangers of a robot making unintentional
contact with a person’s back, understanding the potential for injury
in human-robot collisions involving this part of the body is a critical
research gap that must be addressed. New human-robot impact tests
would also be useful for validation of prior results and the continuing
development of safety standards, as formulation of tests and metrics for
human-robot collisions poses one of the major challenges for standard
development.

Additional work could also be performed with regard to impacts in
nonstandard configurations. For example, existing tests may be inap-
propriate if a collision occurs within a pinch point of two robot links or
if a person is pinned between a robot and a solid surface. Such config-
urations can also impact the rigidity of a collision, and rigid collisions
have been identified as a particularly difficult technical challenge in
post-collision control literature (Haddadin et al., 2007).

The knowledge gained from performing tests involving new contact
points and nonstandard configurations would also be vital for devel-
opment of new post-collision control methods. For example, the ideal
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approach for minimizing harm from impact with a person’s chest may
not be the optimal approach for minimizing harm from impact with a
person’s back. Studying how to detect whether a pinch point collision
has transpired —and the best control response a robot should take in
order to minimize harm in such a scenario — is also an open research
problem. Developing a system capable of robustly detecting imminent
rigid impacts, allowing for the control response to be engaged earlier,
could be another topic for future research.

Ensuring safety during intentional human-robot contact is another
concept that warrants further research. While some works have allowed
for this interaction paradigm by, for example, detecting whether contact
is intentional or by limiting exerted forces during contact, techniques
that integrate detection of intentional contact and maintenance of safe
interaction by limiting the amount of power transmitted to the person
would be beneficial. In particular, it would be useful for newly devel-
oped methods to not rely upon engagement of a gravity-compensated
mode, as is often done currently, as switching to such a mode limits the
collaborative tasks that can be performed. If a person and robot are co-
manipulating an object, for example, and the robot’s elbow comes into
contact with the person’s side, it would be useful for the safety system
to monitor the amount of power transferred to the person and continue
the original guidance or motion until a safety threshold is reached. It is
also important to monitor the power transfer through both the contact
point and the object being manipulated.

While some work regarding this type of integration has already been
conducted, it has mostly applied to lightweight, back-drivable robotic
arms. It would be useful to extend this type of interaction to stiffer,
heavy-lift industrial robots; allowing for safe collaborative interaction
with such robots would enable a wide variety of useful applications
within the manufacturing domain.

6.2 Extending Safe Motion Planning

One potential improvement in the realm of safe motion planning is the
introduction of additional safety knowledge into planners’ cost func-



330 Future Directions

tions. While planning using parameters such as separation distance,
robot inertia, or any of the other constraints mentioned in Section 3
could be quite useful, a substantial benefit could also be derived from
encoding more complex safety knowledge, as each additional parameter
that the robot can reason over when planning its motions would enable
it to select safer paths. This would also allow the robot to utilize more
efficient, direct paths when nearby humans are not in danger of being
harmed.

The biggest challenge of incorporating new and more complex safety
knowledge into motion planning is identifying what knowledge is sig-
nificant when planning motions and determining the optimal, general-
izable numerical representation of this knowledge such that it can be
effectively incorporated into a cost function. Consider, for example, the
high-level concept of team fluency. When an individual plans his or her
motions around others during a task, he or she most likely takes the
experience and knowledge of others sharing the task into account. He
or she maintains a mental model of how well the team performs the
given task — and, therefore how quickly and how closely to others he
or she is able to move without interfering with one another’s motion.
It follows that incorporating this concept into robot motion planning
could be useful for planning safe motions in proximity to people. The
ability to encode team fluency and incorporate it into a motion plan-
ner’s cost function is not a trivial task, however, and remains an open
research problem.

Injury knowledge is another high-level concept that could prove
useful for safe motion planning. As described in Section 2.1.1, this con-
cept was incorporated into a pre-collision control technique by Had-
dadin et al. (2012), but not at the motion planning level. Expanding
on the results from that work, discovering new relevant metrics of in-
jury knowledge and embedding them into a motion planner would allow
a robot to, for example, identify the type of tool it is holding, analyze
the potential for human-robot impact while moving along a path, and
adjust its path accordingly. In this way, the robot would perform more
conservative motions when holding a dangerous object near humans
than when it was positioned further away or holding a less-dangerous
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tool. Injury knowledge could also be applied to direct motion away from
more vulnerable parts of the human body depending upon the tool be-
ing held by the robot (i.e., orienting a bright light source away from
a person’s eyes or keeping sharp objects away from people altogether
during motion).

6.3 Improving Safety Through Prediction

Most of the human prediction methods mentioned in Section 4 are de-
signed for very specific tasks and do not generalize well to other situa-
tions, which prevents them from being effectively deployed in real-world
HRI applications. For example, if a task is well-structured and repet-
itive, treating it as a Markov process and utilizing probabilistic plan
recognition may yield accurate predictions of how a person might move
next. If a task does not possess such a structure, however, motion char-
acteristics such as biomechanical predictors would likely generate better
results. As it may not always be clear which prediction method would
yield the desired performance for a particular task, fielding prediction
approaches as a safety measure for HRI can be difficult. Furthermore,
an incorrect prediction method could result in poor accuracy, which
can have serious safety consequences.

Development of generalizable prediction methods would be a use-
ful step toward making prediction a viable safety measure for a wider
variety of tasks. How to best select among various types of predictors
based on data collected from a given task and how to most effectively
combine these predictors to produce accurate and robust predictions
are open research questions.

There is also a limited amount of work that has combined prediction
of larger body motion, such as walking, with that of more intricate
motions, such as reaching. While only one type of predictor may be
useful for maintaining safety in certain cases, prediction of both walking
and reaching motions can be useful for planning safe robot motion
during tasks involving a wide range of interaction distances.

Also, the majority of work within the realm of prediction has been
focused on robot predictions of human behavior. As mentioned in Sec-
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tion 4.3, HRI is a two-way interaction; ensuring that robot behavior is
predictable so that a person can contribute to the safety of the overall
system by “planning” safe paths themselves is also quite important for
safe interaction. Further research in this field could include evaluating
the optimal motions for predictability based on the physical character-
istics of the robot, developing new devices for effective communication
of intent, or investigating the relationship between a human’s ability
to predict robot behavior and whether he or she has prior experience
working with robots.

6.4 Expanding Psychological Safety Considerations

Psychological safety is often overlooked when designing systems for
HRI. While some research efforts have investigated maintenance of psy-
chological safety, many have not considered this aspect of safety at all,
or treated it as a secondary consideration. However, as robots are in-
troduced as permanent residents of homes, coworkers in an office or
factory setting, companions for children or the elderly, or into myriad
other potential HRI applications, people will interact with robots more
frequently and for extended periods of time. Consequently, negative
psychological effects resulting from HRI are of substantial concern.

Physiological sensing enabling online adjustment of robot behavior
is one area that warrants additional research. This capability would
allow robots to reason about the stress or discomfort they induce in
humans and create a feedback loop to reduce speed, maintain a greater
distance from a person, or change communication modes, among other
possibilities. Physiological signals are difficult to collect, however, as
sensors are often large and intrusive. Effective physiological sensing for
online feedback requires development of less-intrusive sensing methods.
This could be accomplished through software, such as an algorithm
that derives heart rate from video data (Balakrishnan et al., 2013), or
hardware, such as a less-intrusive method of electroencephalography
(EEG) sensors (Emotiv, 2014).

Once data is collected, understanding the resulting complex and
noisy physiological signals poses another problem. Research into de-
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riving the link between physiological signals and perceived safety and
comfort through signal processing methods or other analysis is also nec-
essary. Significant efforts to identify useful metrics from physiological
signals have been made outside of the field of HRI: for example, the
DARPA Augmented Cognition (AugCog) program focused on assess-
ing cognitive activity and performance in order to adapt information
systems (St. John et al., 2004). Although the results of such work may
not be directly applicable to HRI safety, the insights gained can be
useful for development of physiologically-based metrics of psycholog-
ical safety. Tools designed for collection and analysis of physiological
signals would facilitate integration of physiological measurements into
HRI safety methods, allowing for maintenance of psychological safety
across all HRI applications.

Also, greater consistency in evaluation of psychological factors
would be beneficial for the field. Regardless of whether a given work
specifically addresses the issue of safety, researchers should strive to
ensure the algorithms and systems they develop not only improve in-
teraction by some metric, but also do so without compromising psy-
chological safety. By collecting psychological safety data, researchers
can better understand the potential impact of their systems and are
better equipped to refine their work such that it is less likely to result
in harm. However, validated perceived safety and comfort metrics are
necessary in order for researchers to be able to do this effectively. While
some validated surveys for HRI do exist, such as the “Godspeed” or
“BEHAVE-II” questionnaires mentioned in Section 5.2.1, the scope of
these surveys is typically quite broad and extends far beyond assess-
ing perceived levels of safety and comfort. The relatively small number
of safety-relevant items included in surveys of this scope may not be
sufficient for comprehensive evaluation.

6.5 Integration of Safety Methods

The four main methods of ensuring safety in HRI described throughout
this work have various benefits and drawbacks individually. However,
by combining these methods, it is possible to exploit their individual,
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complementary strengths to develop a more effective integrated safety
system.

Several works mentioned earlier have integrated multiple predic-
tion methods. In the paper by Lasota and Shah (2015), for example,
using a human-aware motion planner in conjunction with a pre-collision
control system that adjusts the robot’s speed based on distance of sep-
aration, the system was able to prevent collisions and also exhibited
improved psychological safety over use of the control-based component
alone. Similarly, Kulić and Croft (2007) developed a combined system
containing safety components for various time horizons that also incor-
porates both control- and planning-based methods. The authors were
able to demonstrate smooth integration of these components through
empirical evaluation.

While the above works represent some examples of the integra-
tion of multiple prediction techniques, the field would benefit from
additional research into which methods to combine and how best to
combine them. Integrating post-collision control methods into safety
systems, for example, could provide an effective failsafe for planning-
or prediction-based approaches.

Creating such new integrated safety systems poses certain chal-
lenges, however. First, it is necessary to determine a method for bal-
ancing the contributions of the various sub-components under cir-
cumstances in which they might suggest conflicting responses. (Which
methods should take precedence, and what factors must be considered
when making such a decision?) Second, it is difficult to evaluate the
effectiveness of a complex, multi-tiered safety system. A standardized
method of testing and comparing safety systems, which incorporates
a wide variety of scenarios and test cases, is needed. Which scenarios
and test cases are most important, and which measures of effectiveness
should be considered most relevant, are both open questions.



7
Conclusion

In this work, we surveyed and categorized prior research addressing
safety during human-robot interaction in order to identify and describe
various potential methods of ensuring safe HRI. Toward this goal, we
identified four main methods of providing safety: control, motion plan-
ning, prediction, and consideration of psychological factors.

Although significant strides have been made thus far, ensuring safe
HRI remains an open problem. Novel, robust, and generalizable safety
methods are required in order to enable safe incorporation of robots
into homes, offices, factories, or any other setting.

Due to the commercial incentives for introducing robotic assistants
onto factory floors, there has been a significant amount of interest in
HRI within the manufacturing domain. Consequently, much of the
work surveyed in this monograph focused on interaction with manip-
ulator arms in the manufacturing setting. The presented techniques
and methods, however, can also be adapted and applied to a variety
of other types of robots and domains. Through this work, we hope to
encourage and facilitate such adaptation, along with the development
of new methods for safety in HRI as it expands into these new domains.

335



336 Conclusion

By applying and building upon the lessons learned from prior work,
the research community will be able to make HRI increasingly safe over
time, which will inherently decrease the risks associated with HRI.
Mitigating this risk will, in turn, lead to a more rapid transition of
HRI systems from research labs into homes, offices, and factories.
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