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Introduction
Traditional uses of robotic technology in manufacturing
have seen robotic work physically caged-off and separated
from human workers. Automotive manufacturing is a suc-
cess case for manufacturing automation. However, the hu-
man element is still an incredibly important facet of auto-
motive manufacturing. Manual work still counts for 50%
of the build process and requires two-thirds of the factory
footprint. The process to build a car remains a manual task,
which requires the dexterous skills of people. Recent ad-
vances in robotic technology are opening up the possibility
of integrating mobile robotic assistants into areas of the fac-
tory that have traditionally been reserved for human work-
ers. Research in localization and mapping, computer vi-
sion, control systems, and learning-from-demonstration is
allowing these robots to support non-value added tasks (e.g.,
fetching of parts) and even value-added tasks in some cases
(e.g., welding, drilling, etc.).

Successfully introducing this advanced robotic technol-
ogy to work on human-robot teams requires an algorithm
that can both safely choreograph the activity of these teams
in real-time and generate robotic behavior that gains the trust
of the human workers and managers. Human workers of-
ten develop a sense of identity, security, and purpose from
their jobs or roles in factories. Similarly, human workers
develop mental models or expectations of how the team as
a whole should work together. These patterns and expecta-
tion of workflow can change from team to team even when
working on the same job. Thus, giving robots the ability to
understand how to complete the set of tasks in a way that
is intuitive to their human teammates is paramount to the
success of integrating robots into human workspaces.

Developing an user-interface by which humans can com-
mand or directly operate robotic assistants also presents a
challenge to the success of integrating robots into the hu-
man workspace. The human-robot interface has long been
seen as a major bottleneck for the success of these robotic
systems (Parasuraman, Mustapha, and Hilburn 1999), even
though much effort has been conducted to improve the
fluidity of the interaction (Clare et al. 2012). Other re-
searchers have taken the tack of explicitly formulating the
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problem with mathematical constraints and optimization cri-
teria (Ryan et al. 2013). This approach is especially impor-
tant because, in many domains, it is often difficult or imprac-
tical to hand-code the appropriate constraints and rules-of-
thumb that human experts learn over years of experience in
the field. For example, a study of aircraft carrier flight deck
operations showed that the heuristics veteran operators use
outperform mathematical optimization (Ryan et al. 2013).

Apprenticeship Scheduling
We as roboticists need the ability to efficiently learn the how
to coordinate a fluent team from the human experts who have
gained knowledge and experience over years at their tasks.
My PhD dissertation will be developing the right mathemat-
ical models and computational techniques to autonomously
learn the implicit heuristics of expert operators to coordi-
nate resources in real time. The first challenge is developing
fast methods for the dynamic coordination of human-robot
teams that can adapt robot behavior in real-time to support
fluent teamwork. Second, we need to understand how peo-
ple change their behavior based on parameters such as their
level of control over team coordination and the composition
of the team (e.g., human-human versus human-robot) to help
discover the correct mathematical representations to model
this behavior. The third challenge is developing computa-
tional techniques to learn how people schedule team activi-
ties, encode that knowledge in robotic systems, and validate
that the learned behavior improves team fluency.

Fast Methods for Human-Robot Team
Coordination
The first step in developing an apprentice scheduler for
human-robot teams is creating scalable computational mod-
els and techniques to reason one the space of possible sched-
ules. Problems of interest in manufacturing consist of upper
and lowerbound temporal constraints, spatial constraints,
and heterogeneous agent capabilities. Approaches in prior
work often decompose the problem to gain computational
tractability by having each agent schedule their own tasks.
However, when agents work in close proximity with shared
spatial resources, each commitment an agent makes directly
affects the utility of the rest of the team. Methods that
reason about each agent separately thus lose their ability
to efficiently reason when solving problems of interest. I



developed a computational technique that efficiently rea-
sons about each agents use of shared resources to provide
a real-time coordination of robots working alongside hu-
man workers. An example scenario can be seen at http:
//youtu.be/_qb2_jJID5c. To ensure that agents do
not violate temporal and spatial constraints, I formulated an
analytical schedulability test that upperbounds the tempo-
ral and spatial resources required to complete subsets of the
build process (Gombolay, Wilcox, and Shah 2013). This
technique for real-time scheduling of human-robot teams
serves as the first step towards developing the correct mod-
eling for apprentice scheduling.

Human Factors of Decision-Making Authority and
Team Composition
Before modeling the human decision-making process, I con-
ducted a set of human-subject experiments to understand
how people would react to working alongside and sharing
decision-making authority with robotic teammates. In our
experiment, a human subject worked on a human-robot team
to complete a set of tasks analogous to a manufacturing envi-
ronment. We presented three scenarios to the participant: 1)
subjects could allocate work to each member of the human-
robot team, 2) subjects could control only the tasks they
would perform, and 3) the robotic agent would allocate the
work to each member of the team. 3) I found that humans
make qualitatively different scheduling decisions based on
the level of control they have over their own work and the
work of their robot teammates (Gombolay et al. 2014). I
am currently conducting a set of experiments where the sub-
ject works on a human-human team to isolate the effects of
working with a human versus a robot. The insights I have
gained from these experiments will help inform the design
of the right mathematical representation of human decision-
making for coordinating human-robot teams.

Learning Implicit Constraints and Goals for Team
Coordination
Learning the implicit rules-of-thumb, heuristics, hard and
soft constraints of a complex team coordination task is a
challenging problem. Many approaches to learning from ob-
servation assume that experts are behaving optimally. How-
ever, human factors studies of decision-making show that
experts in time-critical domains often make decisions that
satisfy relevant constraints rather than taking the time to
search for the optimal solution. For example, studies of fire-
fighters show that people in these domains find previous ex-
periences that most resemble the current scenario and use
that as the basis for their actions (Klein 1993). Furthermore,
different experts can generate different but equally produc-
tive plans for managing resources in a factory.

One common approach to learning from observation that
has been quite successful is Inverse Reinforcement Learn-
ing. Researchers have extended the capability of IRL algo-
rithms to be able to learn from operators with differing skill
levels (Ramachandran and Amir 2007) and identify operator
subgoals (Michini and How 2012). IRL is able to leverage
the structure of the Markov-Decision Process to bind the ra-
tionality of the agent. However, resource optimization or

scheduling in manufacturing is highly non-Markovian: the
next state of the environment is dependent upon the history
of actions taken to arrive at the current state and the current
time. Some researchers have tried to extend the traditional
Markov Decision Process to characterize temporal phenom-
ena, but these techniques do not scale to solving large-scale
coordination of human-robot teams.

Attending AAAI, the premier conference in artificial in-
telligence, would help me to understand the state-of-the-art
in artificial intelligence, mathematical modeling of human
and machine decision-making, and robotics. Exchanging
ideas and developing collaborations with researchers in the
AAAI community would be an invaluable opportunity to
help me realize the goals of my dissertation. By provid-
ing manufacturers and other practitioners of robotics with an
apprentice scheduler that can learn how to coordinate man-
ufacturing resources based on the expertise of current hu-
man operators, we can enable the successful integration of
robots into the human workplace both in terms of human-
robot team efficiency and the likelihood that the robotic sys-
tem will be adopted and trusted by its human teammates.
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