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Abstract—Occasionally, participants in a meeting can leave
with different understandings of what had been discussed. For
meetings that require immediate response (such as disaster
response planning), the participants must share a common
understanding of the decisions reached by the group to ensure
successful execution of their mission. In such domains, inconsis-
tency among individuals’ understanding of the meeting results
would be detrimental, as this can potentially degrade group
performance. Thus, detecting the occurrence of inconsistencies in
understanding among meeting participants is a desired capability
for an intelligent system that would monitor meetings and provide
feedback to spur stronger group understanding.

In this paper, we seek to predict the consistency among team
members’ understanding of group decisions. We use self-reported
summaries as a representative measure for team members’
understanding following meetings, and present a computational
model that uses a set of verbal and nonverbal features from
natural dialogue. This model focuses on the conversational
dynamics between the participants, rather than on what is being
discussed. We apply our model to a real-world conversational
dataset and show that its features can predict group consistency
with greater accuracy than conventional dialogue features. We
also show that the combination of verbal and nonverbal features
in multimodal fusion improves several performance metrics, and
that our results are consistent across different meeting phases.

I. INTRODUCTION

Meetings are an integral component in many collaborative

and organized work environments [1]. Each day, over 11

million meetings take place in the United States, and over

2.6 billion occur each year [2]. However, meetings are often

not as efficient as they could be: Every year, an estimated $54

million to $3.4 billion is lost as a result of inefficient meetings

[3]. Consequently, there is great interest in improving meeting

productivity and efficiency.

One possible source of inefficiency is inconsistency between

team members in their understanding of the outcome of a

meeting [3]. This occurs when each team member leaves

the meeting with a different understanding of what has been

decided by the group (i.e. group decisions). This can po-

tentially lead to miscommunication and confusion after a

meeting. In certain applications, these mishaps can have se-

vere consequences; such as disaster response planning, where

degradation in team performance can lead to high public safety

costs [4].

Regardless of the purpose behind a meeting, it is im-

portant that all team members are ‘on the same page.’ We

are interested in developing an intelligent system that would

monitor meetings with the goal of helping team members

to have consistent understandings of their group decisions.

We envision a system capable of detecting inconsistencies

among members so that it can provide cues to the group to

revisit relevant discussion points. A system with this capability

would help to reduce the number of misunderstandings among

meeting participants and result in more efficient meetings.

Monitoring dialogue during group decision-making is a

challenging task. Human dialogue is complex; discussions

unfold in cycles, agreements are fluid, and proposals of ideas

are often communicated and accepted implicitly [5]. Despite

these challenges, researchers have developed useful qualitative

models for group decision-making processes based on philo-

sophical, linguistic and psychological foundations [6], [7],

[8]. In the field of computational linguistics, several models

have been proposed to capture levels of joint consensus [9],

commitment [10] and agreement [5] within a group. Overall,

prior art provides theoretical foundations for mapping natural

human dialogue to a set of dialogue features that concretely

capture information during group decision-making [5], [11],

[12].

In this paper, we utilize a set of dialogue features to develop

a computational model for predicting consistency among team

members’ understanding of group decisions (referred to as

group consistency). We use a particular set, called Eugenio’s
features, which qualitative studies indicate better captures lev-

els of joint commitment compared to conventional features [5].

We incorporate these features into a quantitative framework

to perform prediction. In addition to verbal features, we also

utilize a set of nonverbal features (head gestures) to capture a

parallel layer of team members’ communicative intent. To the

best of our knowledge, our model is the first to automatically

predict levels of group consistency, and also the first to do

so through sequences of verbal and nonverbal features taken

from natural dialogue.



We conduct our analysis on a corpus of meeting data

focused on group decision-making to solve a design problem

[13]. First, we validate the use of Eugenio’s features for

predicting group consistency and show improvement relative

to the use of conventional dialogue features. Next, we in-

corporate a layer of head gestures into our model and show

that this further improves several performance metrics. Finally,

we show that the above results are consistent across different

meeting phases.

II. RELATED WORK

In this section, we provide a brief summary of prior qual-

itative and quantitative studies that analyzed group decision-

making.

Qualitative study of group decision-making is an active area

of multidisciplinary research, involving a number of studies

with philosophical, linguistic and psychological foundations

[6], [7], [8]. These works focus on the development of

theoretical models for conversational dynamics involved in

group decision-making. Researchers have proposed models for

consensus [9], commitment [10] and agreement processes [5],

while other works have proposed models for various social

decision schemes and considered human socio-emotional and

behavior models [14], [15]. To the best of our knowledge,

none of the theoretical models mentioned above have yet

to be generalized to an automatic, predictive framework in

natural human dialogue. One reason for this is the difficulty

of mapping complicated human dialogue to a concrete set of

dialogue features.

To address this challenge, several sets of dialogue features

have been proposed for the capture of relevant information

during group decision-making. Several studies incorporate

features such as dialogue acts (DAs) and adjacency pairs

[16] [17] to capture a level of agreement. Other works use

word-based features (e.g., the number of positive and negative

keywords spoken during a conversation) and prosodic cues

to perform prediction tasks [18]. Although various sets of

dialogue features have been used, these studies only analyze

decision-making process from the perspective of a single

participant; consequently, they do not capture the level of joint

agreement among team members as a group.

More recently, Eugenio et al. [5] conducted a study of the

modeling of collaborative dialogues, with a focus on design

problems in which information is equally distributed and must

be shared among team members to successfully result in a

decision. Eugenio et al. found that the notion of commitment

is more useful than that of simple acceptance or rejection

(conventional DAs) for monitoring group decision-making.

A new set of features, referred to as Eugenio’s features,

were introduced to help monitor the evolving attitude of

participants’ commitment toward options1, and how a joint

commitment is achieved by the group. Eugenio’s features

have also been shown to facilitate the recognition of implicit

1‘Options’ here refers to proposed ideas or choices to be decided on by the
group. [5]

and/or passive acceptance of options by team members. These

characteristics make Eugenio’s features useful for predicting

group consistency, since joint commitment toward an option

would naturally lead to joint understanding of group decisions.

The key differences between previous works and ours are:

(1) Our approach generalizes dialogue features derived from

studies of group decision-making into an automatic, predic-

tive framework. (2) Specifically, we develop a computational

model for predicting group consistency using Eugenio’s fea-

tures and quantitatively verify their utility. (3) Our approach

also integrates a layer of nonverbal features that provide addi-

tional information toward the prediction of group consistency.

III. DEFINITIONS AND HYPOTHESES

In this section, we provide a formal definition of ‘group

consistency’, which is the primary object of our investiga-

tion; as well as our definition of a ‘discussion point.’ Then

we present our hypotheses and describe our approaches for

evaluating them.

A. Definition: Group consistency

Group consistency is defined as “the consistency among

team members’ understanding of group decisions,” and essen-

tially captures the alignment of team members’ understanding.

It is important to highlight that our focus is on the level of

consistency, and not on what the actual group decisions are.

In our study, we define two levels of group consistency:

strong or weak. Strong consistency occurs when all team

members have the same understanding of the group’s de-

cisions; weak consistency occurs when one or more team

members’ understandings differ. (Weak consistency would

occur in situations where participants may have misunderstood

an idea or missed an important detail during the meeting.)

Figure 1 provides a visual illustration of weak consistency,

where the team member on the rightmost side carries an

understanding that is conceptually different from that of the

other members.

Fig. 1: Visual illustration of weak consistency

In order to assess the level of group consistency, we use

self-reported summaries as a representative measure. These

summaries contain information regarding group decisions from

the perspective of each participant. If the contents of all the

summaries are aligned, there is strong consistency among

team members. If one or more summaries indicate a different

conclusion, there is weak consistency. Prior work has used



a similar approach of using self-reports from team members

to establish ground truth on agreements [19]; similarly, we

assume that self-reported summaries can provide an effective

ground truth to assess group consistency.

B. Definition: Discussion point

We define a discussion point as a conversation segment

wherein deliberations are focused toward decision-making

about a single topic. Discussion points closely resemble a list

of items within a meeting agenda. Since meetings frequently

involve the discussion of several different topics, we assess

group consistency per discussion point.

C. Hypotheses and Approaches

The aim of our study is to develop a computational

model capable of predicting group consistency using features

from natural dialogue. We incorporated a set of verbal and

nonverbal features important for capturing the dynamics of

the group decision-making process. In doing so, we evaluated

the following hypotheses:

H1 (Validation of Eugenio’s features)
Eugenio’s features can predict group consistency with
improved performance over conventional DAs. We use

Eugenio’s features as input for our computational model,

and compare its prediction performance to the use of

conventional DAs.

H2 (Incorporating head gestures)
Multimodal fusion of Eugenio’s features and head
gestures improves overall prediction performance
compared with using Eugenio’s features alone. Literature

suggests the importance of nonverbal features for

modeling human communication [20]. Head gestures

have been used in prior computational models to infer a

state of agreement, disagreement, concentration, interest

or confusion [21]. In our study, we test whether the

combination of head gestures with Eugenio’s features

improves the prediction performance of our model.

H3 (Robustness across different topics)
Our model is robust where its prediction results are
consistent across meetings of different topics. Since Euge-

nio’s features and head gestures focus on conversational

dynamics rather than what is being talked about, our

model should be robust to specific keywords and topics.

We seek to evaluate whether the results from H1 and H2
are consistent across different meeting phases (described

in Table I), where each one is fundamentally unique in

its agenda and discussion topics. We train and test our

model separately within each meeting phase, and compare

performances.

IV. DATASET AND FEATURES

The dataset we used for our study is from the AMI meeting

corpus [13]. It is one of the largest corpora of meeting data,

containing over 100 hours of recordings. In each of these

meetings, a team of four people collaborated in order to design

a remote controller. The meetings are divided into four distinct

phases of the design process (descriptions provided in Table I)

and are scenario-driven, with each person playing one of four

specific roles: project manager, industrial designer, marketing

expert or user interface designer. Although each participant

was playing a role, the conversations that occurred during the

meetings reflect natural, human-human interaction.

TABLE I: Four distinct meeting phases in the dataset

Meeting Phase Discussion

Project kick-off Getting acquainted with each other and discussing
project goals

Functional design Setting user requirements, technical functionality,
and working design

Conceptual design Determining conceptual specifications for compo-
nents, properties, and materials

Detailed design Finalizing user interface and evaluating the final
product

The AMI meeting corpus is well-suited for our study,

because the conversations that occurred during these meetings

were tailored toward a group decision-making process. The

use of Eugenio’s features is also appropriate, due to the meet-

ings’ collaborative environment, wherein all decision points

were consensual. The dataset provides a rich collection of

annotations2. In our study, we used annotations of participant

summaries, topic segmentations, dialogue acts and head ges-

tures. Here, we describe how each annotation layer was used to

construct the components necessary to build our computational

model.

A. From topic segmentations to discussion points

Topic segmentations partition each meeting according to

related topics. They naturally represent our definition of dis-

cussion points by providing conversation segments that focus

on the decision-making process for a single topic3.

B. From participant summaries to group consistency

Self-reported participant summaries were used to establish

ground truth for group consistency. At the end of each meeting

phase, participants were asked to provide written summaries of

all decisions made during the meeting. As mentioned in Sec-

tion III-A, we compared their contents and established strong
consistency for the given meeting whether all summaries were

aligned, or weak consistency if one or more differed. This

comparison was made for each discussion point during the

meeting. Two annotators performed the comparison (inter-rater

agreement, κ = 0.73), resulting in group consistency labels for

a total of 140 discussion points. (There was an imbalance in

the distribution: Out of 140 discussion points, 93 had strong

consistency and 47 had weak consistency.)

2For a full list of available annotations, we refer readers to [13].
3Some examples of topics from the AMI dataset include: handle design,

battery options, target audience, etc.



Line Speaker 
ID  

Topic Discussion = “Remote locator” Eugenio’s 
features 

Head gestures 

  ……   
1 B Do we incorporate the idea of trying to locate the remote control again via a beeping noise? PDO  
2 D Yeah, think so.  D: Concord 
3 C Um, I think so, because it's so small   
4 C I mean if we only have like two, three buttons it might be essential to have to have that [pause]  B: Concord 
5 B The ability to locate it again.   
6 C Yeah.  B: Concord 
7    A: Concord 
8 B So that would require a transmitter maybe attached to the TV and a basically small microphone on the actual 

unit, … 
UO  

  ….   
9 B If you could look into what we’ve suggested so far, the feasibility of small transmitter, and … Proposal  
10 C Okay.  Sure.  Commit C: Concord 

Fig. 2: A sample conversation segment taken from the AMI corpus. The participants here are discussing on a topic of a remote locator.
Corresponding layers of Eugenio’s features and head gestures are shown on the right columns.

C. From dialogue acts to Eugenio’s features

The AMI dataset provides full annotations of dialogue acts

(DAs), but not Eugenio’s features. However, DAs can be

used to form Eugenio’s features, given knowledge of ‘solu-

tion sizes.’ A solution size is defined as ‘determinate’ when

sufficient relevant information has been exchanged between

meeting participants to form options. ‘Indeterminate’ refers to

instances when further balancing of information is required.

We applied the heuristic of marking a portion of conver-

sation as ‘indeterminate’ until the last DA label of ‘inform’

is displayed, after which the conversation segment is marked

as ‘determinate.’ With DAs and solution sizes, we applied the

coding scheme described in [5] to form Eugenio’s features.

Table II provides an overview of Eugenio’s features, including

their descriptions and coding schemes. Note that ‘action-

directives (AD)’ correspond to suggestions and all elicit forms

of DAs, which require actions from partners. For illustration,

Figure 2 shows a sample conversation segment with the layer

of corresponding Eugenio’s features.

TABLE II: Eugenio’s features, descriptions, and coding schemes

Feature Description Coding

Partner
decidable
option
(PDO)

Occurs when a speaker offers an option
that partners can use in decision-making.
Corresponds to options that require further
deliberation and balancing of information
within the group.

AD, offer +
indetermi-
nate

Proposal Occurs when a speaker offers an op-
tion following its full deliberation by the
group.

AD, offer +
determinate

Commit Occurs when a speaker shows commit-
ment to an option after its full delibera-
tion.

Offer,
assessment
(positive) +
determinate

Unendorsed
option (UO)

Occurs when an option is simply pre-
sented during deliberation, without the
speaker expecting any corresponding ac-
tion from the other group members.

Open-
options +
determinate

D. Head gestures

The AMI corpus provides annotations of head gestures that

reflect one’s intentionality rather than simple form. A head nod

is further evaluated in order to distinguish between signals

of comprehension, emphasis, etc. We incorporated gestures

intended to communicate understanding and comprehension

between participants. Table III highlights the description of

head gestures used in our study. Figure 2 also shows a layer of

head gestures in the conversation segment. Overall, sequences

of Eugenio’s features and head gestures are used in our

computational model for prediction of group consistency.

TABLE III: Description of head gestures used in our study

Head gesture Description

Concord Signals comprehension, agreement or positive response;
often characterized by a head nod.

Discord Signals comprehension failure, uncertainty or disagree-
ment; often characterized by a head shake or tilt.

Negative Signals negative response to a yes-no question; usually
characterized by a head shake.

V. COMPUTATIONAL MODEL

In this section, we describe our computation model, which

incorporates feature sets described in Section IV. We aimed

to study the effect of using these sets, so rather than exploring

and comparing the accuracy of various learning algorithms,

we focused on hidden Markov models (HMMs) as the primary

tool for prediction. Given a sequence of features per discussion

point, HMMs are used to predict either strong or weak group

consistency (a form of binary classification). We incorporated

HMMs because of their applicability to modeling systems

with temporal sequences, as well as for their prior success in

modeling human communication and social interactions [22],

[23], [24].

An HMM can be described as a tuple {S,O,A,B, π},

where S is the set of hidden states, O is the set of obser-

vations, A is the state transition matrix, B is the observation

probability matrix and π is the initial state distribution. In our

formulation, O represents a finite set of Eugenio’s features

and head gestures, listed in Tables II and III, respectively. S
represents hidden states underlying the temporal process of

group decision-making. Unlike O, the concrete representation

of S is unknown; however, only its cardinality, (|S| = m),



is necessary in order to learn the remaining distributions of

A,B, and π. These distributions are learned iteratively through

an expectation-maximization (EM) algorithm known as the

Baum-Welch algorithm [25]. With HMMs learned separately

for both strong and weak cases of group consistency, test

sequences are classified according to maximum likelihood

estimation. We leave further details and properties of standard

HMMs to [26].

A. HMM: Eugenio’s features

Figure 3 depicts a graphical model of our HMM with a

sequence of Eugenio’s features. A Eugenio’s feature coupled

with the speaker ID forms a unique observation in the HMM

sequence. To train and test the model, we performed leave-one-

out cross-validation (LOOCV) in order to maximize the size

of the training data. The only meta-parameter for the learning

algorithm is the number of hidden states (m), which we varied

from 1-5. In addition to HMM with Eugenio’s features, we

trained and tested another HMM using conventional DAs4

relevant to group decision-making. This served as a baseline

case for comparison.

….. 
<start of 
discussion> 

<end of 
discussion> 

Observations =  sequence of Eugenio’s features 

Fig. 3: An HMM with Eugenio’s features as observations (follows
the order shown in the sample conversation segment in Fig. 2)

B. HMM: with head gestures

In order to incorporate head gestures into our model, we

used an early fusion scheme wherein two feature sets are

concatenated into one larger set. The two modality streams

were ordered chronologically and combined to form a single

stream of observations. Figure 4 shows an illustration of

an HMM incorporating both Eugenio’s features and head

gestures. This combined HMM captures occurrences of both

feature sets and learns information regarding their transitions.

We compared the performance of the combined HMM to

HMMs trained only with Eugenio’s features.

VI. RESULTS AND DISCUSSION

In this section, we present the prediction performance of

the computational model and evaluate our hypotheses.

A. Prediction performance: Eugenio’s features

Standard performance measures are presented in Figure 5.

This figure depicts the average results from five different

iterations of varying m. HMMEugenio had a mean accuracy

of 62.1% – an increase of 11% compared to the baseline of

4Four conventional DAs were used: assessment, elicit-assessment,
comment-about-understanding (CAU) and elicit-CAU

….. 
<start of 
discussion> 

<end of 
discussion> 

Combined sequence of Eugenio’s features and head gestures 

D B 

….. 

Fig. 4: An HMM with a combined set of Eugenio’s features and
head gestures (follows the order shown in the sample conversation
segment in Fig. 2)

conventional DAs. Other measures, such as recall, precision

and F1 score, all showed improvement, each with an increase

of approximately 10%. There was also a 12% reduction to the

false positive rate (FPR).

In order to statistically test our hypothesis, we ran paired-

sample t-tests on each performance metric. The assumption

of normality on paired differences was not rejected by one-

sample Kolmogorov-Smirnov tests [27]. P-values from paired-

sample t-tests (df=4) are listed in Figure 5; all show a

statistically significant difference at α of 0.05. These results

support our first hypothesis H1, i.e., that using Eugenio’s

features improves overall prediction performance compared

with the use of conventional DAs.

 Acc. [%] Rec. [%] Prec. [%] F1 [%] FPR [%] 
HMMDAs 51.4 36.5 31.0 33.5 41.1 
HMMEugenio 62.1 44.7 43.8 44.2 29.5 
P-value 0.01 0.02 0.001 0.007 <0.001 

Fig. 5: Performance measures between HMM with DAs and HMM
with Eugenio’s features

B. Prediction performance: combined features

We compared the results of combined HMM to those of

HMMEugenio, but also to an HMMEugenio+DAs wherein four con-

ventional DAs are incorporated to HMMEugenio. This served as

a baseline to level out any potential improvement to prediction

simply due to the addition of more features. Figure 6 highlights

the comparison of results. We first noted that the baseline case

performed worse than HMMEugenio, and that the addition of

four conventional DAs actually reduced overall performance.

Consequently, we ruled out the baseline case and directly

compared HMMEugenio+Head to HMMEugenio.

With HMMEugenio+Head, there was an overall increase in

mean accuracy, recall, precision and F1 score. However, the

increases to accuracy and precision were small: approximately

2-4%. Paired-sample t-tests indicated statistical significance

for the improvements to recall and F1 score, but not the

other metrics. We observed a small increase to FPR, but

this change was not significant. Although the inclusion of

head gestures in the model yielded positive signs of improved

overall prediction, more statistical evidence is required to fully

support H2.



 Acc. [%] Rec. [%] Prec. [%] F1 [%] FPR [%] 
HMMEugenio 62.1 44.7 43.8 44.2 29.5 
HMMEugenio+DAs 45.1 39.1 39.1 39.1 50.0 
HMMEugenio+Head 64.2 55.3 47.3 51.0 31.1 
P-value 0.28 0.02 0.18 0.03 0.49 

Fig. 6: Performance measures across HMMs using different feature
sets

C. Robustness across different meeting phases

We performed four-fold cross validation and compared pre-

diction performances across the four distinct meeting phases.

As described earlier in Table I, each meeting phase is funda-

mentally unique in its agenda and discussion topics. Consis-

tency of prediction performance would indicate robustness of

our model to specific keywords and topics. Figure 7 shows the

comparison, highlighting the accuracies of HMMEugenio+Head,

HMMEugenio and HMMDAs.
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Fig. 7: Comparison of accuracies across different meeting phases

The mean accuracies for all three HMMs remained simi-

lar across the different meeting phases, though their values

were slightly lower than global results presented in previous

sections. This is to be expected, since four-fold CV has less

available training data per fold than LOOCV. We observed an

increasing trend in accuracy per meeting phase from HMMDAs

→ HMMEugenio → HMMEugenio+Head, which reflects results

presented in Sections VI-A and VI-B. This trend was repeated

across different meeting phases as well.

Paired-sample t-test indicates that the difference between

HMMEugenio and HMMDAs is statistically significant for all

meeting phases (df=4, p=[0.001-0.03]). However, more sta-

tistical evidence is required to support difference between

HMMEugenio+Head and HMMEugenio (p=[0.28-0.58]). An iden-

tical approach was taken with the four other performance

metrics, with analogous results. Overall, we observed that

results from H1 and H2 are consistent across different meeting

phases, supporting H3.

D. Discussion

Overall, our ‘best’ computational model of HMMEugenio+Head

is able to predict group consistency with 64.2% accuracy.

There is statistical evidence suggesting the model’s robustness

to any specific keywords and topics different meeting phases.

We also highlight that our computational model has the flexi-

bility to receive as input any set of dialogue features involved

in the group decision-making process. Other features, such as

vocal intonation, sentiments and/or facial expressions, could

have easily been used as an additional observation sequence

for our HMM.
When integrating our computational model for an on-line

system, high recall and low FPR are especially important.

High recall would have a high hit rate of capturing discussion

points with weak consistency; the system can then provide

feedback and spur stronger group consistency. Low FPR is also

important to reduce the rate of false alarms within the system.

Incorrect prediction of weak consistency and false feedback

would be disruptive, and may cause humans to lose trust in the

system. With HMMEugenio+Head, recall and FPR are 55.3% and

31.1%, respectively. There is definitely room for improvement,

especially for reducing the FPR as much as possible while

maintaining a moderate level of recall. However, we believe

that a system capturing only 55.3% of weak consistencies can

still be helpful to human teams, as long as FPR is low (i.e.

that the system predicts ‘weak’ cases only when it is highly

confident). In future work, we aim to test our computational

model during live group meetings and investigate its utility us-

ing both objective (e.g. prediction performance) and subjective

(e.g. human response, social impacts) measures.
Finally, our computational approach relies on a text tran-

scription with segmented topics. This naturally prompts work-

ing with automatic speech recognition and a topic segmenta-

tion tool, with the end goal of developing a real-time system.

Outputs from those tools may induce early noise for our input.

VII. CONCLUSION

In this paper, we developed a computational model capable

of predicting consistency among team members’ individual

understandings of group decisions, referred to as ‘group

consistency.’ Our model focuses on conversational dynamics

involved in the group decision-making process, and uses a

set of dialogue features, Eugenio’s features, that has been

qualitatively validated to capture levels of joint commitment

during group decision-making.
We demonstrated the utility of Eugenio’s features for the

prediction of group consistency, and showed an improvement

in prediction performance over conventional dialogue acts. We

also investigated a multimodal approach of incorporating head

gestures into our model and observed a statistically significant

increase in recall and F1 score.
Overall, our full model predicts group consistency with

64.2% accuracy and shows signs of robustness for meetings

of different topics. Our work combines the strength of human

communications research and machine learning with a vision

for developing an intelligent system that would help teams to

achieve stronger group understanding.
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