
Incremental Scheduling with Upper and Lowerbound

Temporospatial Constraints

Giancarlo F. Sturla and Julie A. Shah

I. Introduction

Responding quickly and efficiently to dynamic disturbances is a crucial challenge in domains such as
manufacturing,10 aerial and underwater vehicle tasking,6,8, 16,18 and health care.4,14,17,20 In many cases,
accurately capturing the complicated dependencies between tasks in these environments requires the use
of upper and lowerbound temporal constraints (i.e, deadlines and wait constraints). However, optimally
scheduling tasks related by upper and lowerbound temporal constraints is known to be NP-Hard.3 While
exact solution techniques exist to efficiently schedule resources, these techniques are computationally in-
tractable for problems of interest with fifty or more tasks and five agents.12,15 Furthermore, techniques that
seek to improve scalability often attempt to distribute the scheduling problem amongst the agents, where
each agent generates its own schedule.5 However, when agents must share unary-access resources (e.g., a
spatial location that can be occupied by only one agent at a time), these techniques lose their advantage
because the problems do not naturally lend themselves to decomposition. As a result, many techniques
work by first finding an initial, though possibly infeasible, schedule through solving a relaxed version of the
problem, and then repairing the schedule to resolve any constraint violations.

Even with the advancement of robotic technology, human operators continue to play a critical role in both
the supervision of the scheduling process as well as in direct task execution. Approximate solution techniques
exist for scheduling against upper and lowerbound temporal constraints;7,13 however, these approaches
construct a new schedule from scratch each time the algorithm is called. Assimilating a new schedule into an
operators’ mental model every time a disturbance occurs during runtime is a challenging prospect. Gombolay
et al. propose a fast, near-optimal solution technique that seeks to minimize the difference in the allocation of
tasks to agents between the previous schedule and the revised schedule in response to a dynamic disturbance,
but this minimization is balanced with schedule optimality.11 Researchers have proposed techniques that
respond to runtime disturbances by incrementally updating the schedule as the disturbances arise.1,2, 9, 19,21

Bartak et al.1 consider resource constraints, but each task is assumed to be independent. Gallagher et
al.9 develop incremental scheduling heuristics for tasks where task durations are decision variables, and the
reward for executing a task is dependent upon its duration and when it is executed. Zweben et al. consider
the problem of iteratively repairing a schedule (i.e., reducing the cost of exiting constraint violations) where
tasks are related through soft, upper and lowerbound temporal constraints as well as resource constraints.21

We propose a set of computational techniques for incremental scheduling of multiple agents to complete a
set of non-preemptive tasks with hard, upper and lowerbound temporal and spatial constraints. Specifically,
we consider the scenario where an initial schedule is given and an additional task must be inserted in the
schedule. This new task may have temporal and spatial dependencies with the previously scheduled tasks. We
model this scheduling problem using a Simple Temporal Network (STN), where nodes represent scheduling
events (i.e., the start and finish times of tasks), and edges represent temporal constraints relating events (e.g.,
task durations, wait constraints, and deadline constraints). Our investigation differs from previous work in
that we are attempting to incrementally schedule non-preemptive tasks with complex dependencies (i.e.,
hard upper and lowerbound temporal and resource constraints).15 Work by Zweben et al. serves as a strong
basis for comparison, but their approach is iterative in nature and works to change an initially infeasible
schedule into a schedule that violates fewer constraints.21 We directly consider currently feasible schedules
and attempt to insert a new task in a way that least increases schedule duration. We organize our work as
follows. In Section II, we formulate the problem of incrementally adding a new task to a schedule as a mixed-
integer mathematical program. In Section III, we describe incremental scheduling methods introduced in

1 of 9

American Institute of Aeronautics and Astronautics

Gallagher et al.9 as well as the iterative repair approach detailed in Zweben et al.21 In Section IV, we briefly
describe our prior work in constructing new schedules in response to dynamic disturbances. We present
a set of heuristics to incrementally update a schedule in Section V. We validate the empirical benefits of
these insertion heuristics in comparison to constructing a full re-sequencing as well as a full re-scheduling in
Section VI. Lastly, in Section VII, we describe our ideas for future work in incremental scheduling.

II. Formal Problem Definition

We formulate the problem of taking a previously-scheduled task set τ ′ and inserting a new task τi as
mixed-integer linear program (MILP), as shown in Equations 1-11. This representation is equivalent to
constructing a new schedule for task set τ where τ = τ ′ ∪ τn+1. In this formulation, Aaτi ∈ {0, 1} is a
binary decision variable for the assignment of agent a to task τi, J〈τi,τj〉 ∈ {0, 1} is a binary decision variable
specifying whether τi comes after or before τj , and sτi , fτi ∈ [0,∞) are the start and finish times of τi.
Equation 1 is a general objective to minimize the makespan, with the decision variables {Aaτi |τi ∈ τ , a ∈ A},
{J〈τi,τj〉|τi, τj ∈ τ}, and {sτi , fτi |τi ∈ τ}. Equation 2 ensures that each task is assigned to a single agent.
Equation 3 ensures that the duration of each τi ∈ τ does not exceed its upper and lowerbound durations.
Equation 4 requires that the duration of task τi, fτi − sτi , is no less than the time required for agent a
to complete task τi. Equation 5 requires that τj occurs at least W〈τi,τj〉 units of time after τi. Equation

6 requires that the duration between the start of τi and the finish of τj is less than Drel
〈τi,τj〉. Equation 7

requires that τi finishes before Dabs
τi units of time have expired since the start of the schedule. Equations 8-9

enforce that agents can only execute one task at a time. Equations 10-11 enforce that tasks sharing the same
resource must be executed one at a time. We use Equations 8-11 to encode spatial constraints on inter-agent
proximity while performing tasks. The worst-case time complexity of a complete solution technique for this

problem is given by O
(

2|A||τ |3
)

, where |A| is the number of agents and |τ | is the number of tasks.

min z, z = max
τi,τj∈τ

(
fτj − sτi

)
(1)

subject to ∑
a∈A

Aaτi = 1, ∀τi ∈ τ (2)

ubτi ≥ fτi − sτi ≥ lbτi , ∀τi ∈ τ (3)

fτi − sτi ≥ lb
a
τi
−M

(
1−Aaτi

)
, ∀τi ∈ τ , a ∈ A (4)

sτj − fτi ≥W〈τi,τj〉, ∀τi, τj ∈ τ |, ∀W〈τi,τj〉 ∈ TC (5)

fτj − sτi ≤ D
rel
〈τi,τj〉,∀τi, τj ∈ τ |∃D

rel
〈τi,τj〉 ∈ TC (6)

fτi ≤ D
abs
τi

, ∀τi ∈ τ |∃Dabsτi
∈ TC (7)

sτj − fτi ≥M
(
Aaτi +Aaτj − 2

)
+M

(
J〈τi,τj〉 − 1

)
, ∀τi, τj ∈ τ , ∀a ∈ A (8)

sτi − fτj ≥M
(
Aaτi +Aaτj − 2

)
−M

(
J〈τi,τj〉

)
, ∀τi, τj ∈ τ , ∀a ∈ A (9)

sτj − fτi ≥M
(
J〈τi,τj〉 − 1

)
, ∀τi, τj ∈ τ |Rτi = Rτj (10)

sτi − fτj ≥ −M
(
J〈τi,τj〉

)
, ∀τi, τj ∈ τ |Rτi = Rτj (11)

III. Background

Previous works have addressed variations of incremental scheduling with upper and lower bound temporal
constraints. Gallagher et al.9 presents a suite of incremental scheduling heuristics. There are, however,
important differences between the scheduling problem presented in this paper versus the problem formulation
in the Gallagher paper. Gallagher et al. selects a subset of the entire task set to schedule. If executing a
task lowers the overall utility of the schedule, then that task is omitted from the schedule. Furthermore, the
reward for a task is a function of its duration, and the duration is a decision variable. Thus, task durations
can be altered to accommodate other tasks. In this paper, all tasks in the problem input have a hard lower
and upper bound time duration and must to be executed. Although there exists fundamental differences in
the scheduling problems, we have adapted techniques by Gallagher et al. to satisfy the constraints of this
paper’s scheduling problem. In particular, we have applied the best-slot insertion option heuristic technique in

2 of 9

American Institute of Aeronautics and Astronautics

Gallagher based upon its promising performance reported in their experimental analysis.9 We implemented
this technique as a baseline for comparison. This technique analyzes all possible time points in which a new
task could be inserted in the current schedule, and commits the new task to be inserted at the time point
that results in the best schedule. This technique is computationally expensive since it computes a schedule
for all possible time points where the new task could be inserted.

Another technique that we explore is adapted from Zweben et al.,21 which presents a constraint-based
iterative repair technique. The scheduling problem again differs slightly in that the problem input is a
complete schedule that possibly violates constraints. The constraint-based iterative repair technique uses
simulated annealing to iterate through constraint violations and perturb the task sequence to improve overall
schedule quality. The scheduling problem in this paper, on the other hand, takes as input a complete schedule
that satisfies all temporal and spatial constraints and a new task that needs to be inserted into this schedule.
Since these problems are similar in essence, we use similar techniques to design a heuristic as a second
baseline that inserts a new task into a schedule in such a way that could possibly violate temporal and spatial
constraints and then iteratively repairs the schedule until all constraints are satisfied. Our adaptation of the
Zweben et al. approach differs from the original because we require that the outputted schedule contains
no constraint violations. Furthermore, we remove the simulated annealing portion of the iterative repair to
improve computational performance. In practice, we find that schedule quality is not significantly improved
for this class of problems without great computational effort.

IV. Approximate Solution Technique

Our heuristic techniques presented in this paper require a feasible schedule as input. Using linear pro-
gramming techniques to compute a preliminary schedule quickly becomes computationally impracticable for
the problem size of interest. Consequently, we use a fast, near-optimal solution technique developed in prior
work to schedule multi-agent teams to complete a set of tasks with hard, temporospatial constraints, which
we call Tercio.11 Tercio takes as input a temporal constraint problem, a list of agent capabilities (i.e., the
lowerbound, upperbound, and expected duration for each agent performing each task), and the physical lo-
cation of each task. Tercio first solves for an optimal task allocation by ensuring that the maximum amount
of work assigned to any agent is as small as possible, as depicted in Equation 12. In this equation, A is
the set of agents, Aaτi is a task allocation variable that equals 1 when agent a is assigned to task τi and 0
otherwise, {Aaτi |τi ∈ τ , a ∈ A} is the set of task allocation variables, A∗ is the optimal task allocation, and
Caτi is the expected time it will take agent a to complete task τi.

A∗ = arg min
{Aaτi |τi∈τ ,a∈A}

max
a∈A

∑
τi∈τ

Caτi ×A
a
τi

(12)

After solving for a task allocation, A∗, Tercio uses a fast sequencing subroutine, which we call the sequencer,
to complete the schedule. The sequencer orders the tasks through simulation over time. Before each commit-
ment is made, the sequencer conducts an analytical schedulability test to determine whether task τi can be
scheduled at time t given prior scheduling commitments. If the schedulability test returns a determination
that the commitment can be made, the sequencer then orders τi and continues. If the schedulability test
cannot guarantee commitment, the sequencer evaluates the next available task. If the schedule, consisting
of a task allocation and a sequence of tasks, does not satisfy a specified makespan, a second iteration is
performed by finding the second-most optimal task allocation and the corresponding sequence. The process
terminates when the user is satisfied with the schedule quality or after a predefined number of iterations.
The computational complexity of Tercio is O(2|A||τ |). The complexity of the task allocation subroutine is
O(2|A||τ |), and the complexity of the sequencing subroutine is O(|τ |3).

V. Insertion Heuristics

In this section, we present four heuristics for incremental scheduling. Each heuristic algorithm takes as
input a complete schedule with n tasks and a set of new tasks with temporal and spatial constraints that
relate it to the original schedule. The algorithm outputs a new schedule that satisfies all temporal and spatial
constraints, including those enforced by the new task.

Heuristic A - Greedy Insertion - The first heuristic involves splitting the set of tasks τ from the original

3 of 9

American Institute of Aeronautics and Astronautics

schedule into three subsets τa, τd, and τm according to the wait constraints of the new task τn+1. τa and
τd are the sets of all the ancestors and descendants of τn+1 in the new schedule, respectively. τm is the set
of tasks that are not ancestors or descendants of τn+1. We say that a task τi is a descendant of a second
task, τj , if there exists a directed path from τi to τj . For example, consider three tasks, τi, τj , and τk. If
there exist wait constraints W〈τi,τk〉 and W〈τk,τj〉, then τi and τk are ancestors of τj . Similarly, τk and τj
are descendants of τi. Heuristic A schedules the tasks in τa and according to their original order. Next,
Heuristic A inserts task τn+1 as early as possible in the sequence to satisfy its precedence relationships with
tasks in τa. Next, tasks in τm and τd are scheduled to maintain their sequence relative to the original
schedule. Lastly, due to changes made by the additional wait constraints of τn+1, there may be gaps in the
schedule in which no task is currently being executed, which would unnecessarily extend the schedule. To
remedy these gaps, we iterate a final time through the tasks to determine whether any task’s start time can
be moved up to reduce idle time. The computational complexity of Heuristic A is O(|τa|+ |τm ∪ τd|2).

Heuristic B - Sorted Insertion - The second heuristic is a slight modification of Heuristic A. Heuristic
B makes the same assumption that the order in which the tasks in τa are performed is not affected by
the addition of τn+1 into the schedule. After scheduling the tasks in τa, the heuristic then takes all tasks
τi ∈ τm ∪ τn+1 and creates a directed acyclic graph and a topological ordering of the tasks as follows:

1. Let G be a directed graph initially with |τm ∪ τn+1| nodes.

2. Let ui be the node that corresponds to task τi.

3. For all wait constraints W〈τi,τj〉 such that τi, τj ∈ τm ∪ τn+1 add a directed edge from ui to uj .

4. If agent a is assigned to τi and τj in τm ∪ τn+1 and lbaτi < lbaτj , then add an edge from ui to uj .

5. If tasks τi and τj in τm ∪ τn+1 share the same spatial location, and lbaτi < lbaτj , then add an edge from
ui to uj .

6. Let T be a topological ordering of G.

After we obtain the topological ordering T to get a proper order in which to schedule the tasks in τm∪ τn+1.
The last subset of tasks τd are then scheduled in the same order as in the original schedule. Lastly, a final
iteration of the tasks is made to eliminate any excess idling in the schedule. The computational complexity
of Heuristic B is O(|τa|+ |τm ∪ τd|2).

Heuristic C - Best Slot Insertion - The third heuristic follows a best-slot insertion option as presented
in the Gallagher et. al .9 The best-slot insertion option searches all possible time points in the schedule at
which a new task could be inserted. It will then insert the new task at the location that yields the great-
est benefit as defined by the problem’s objective function. Note that, unlike that in Gallagher et al., our
scheduling problem has temporal constraints between tasks. As a result, inserting a new task at a certain
time point may have significant effects to the schedule. In our adaptation of best-slot insertion heuristic, we
instead search through a set of permutations such that the new task is inserted between any two tasks in
the current schedule. It begins by preserving the original schedule for the tasks in τa. It then proceeds by
finding the best slot in the original schedule to insert the new task τn+1 as follows. Let T be the permutation
that defines the order in which that tasks in τm ∪ τd were executed in the original schedule. Now let Ti
for 0 ≤ i ≤ |τm ∪ τd| be the extended order such that task τn+1 is inserted before the ith index of T .
For example, if T = (τi, τj , τk) and we want to insert τl, then T0 = (τl, τi, τj , τk), T1 = (τi, τl, τj , τk), etc.
Heuristic C calculates a schedule for each one of the permutations Ti and returns the best schedule found.
The computation complexity of Heuristic C is O(|τa|+ |τm ∪ τd|3).

Heuristic D - Insert and Expand - The fourth heuristic follows an insert-and-expand technique similar
in spirit to heuristics proposed in Zweben21 for independent tasks. The insertion step involves inserting τn+1

into the original schedule subject to the precedence constraints set by tasks in τa. This insertion may result
in temporal and spatial constraint violation with tasks in τm∪τd. Note that this is different from Zweben et
al.21 because the schedule that we want to repair may have temporal constraint violations. Furthermore, our
heuristic searches for a schedule that contains no constraint violations. The expansion step iterates through
each task τi ∈ τm ∪ τd until all temporal and spatial constraints are satisfied. This expansion step is similar

4 of 9

American Institute of Aeronautics and Astronautics

in principle to the iterative repair technique presented in Zweben.21 A single iteration consists of checking
if task τi violates any constraints. If τi violates such a constraint, then the time at which τi is currently
scheduled, sτi , is pushed later into the schedule so as to satisfy its temporal and spatial constraints. Then,
we iterate through all of τi’s children (i.e., {τj |∃W〈τi,τj〉}) and adjust the schedule such that they satisfy
the precedence set by τi as well as the proper spatial constraints. The iteration terminates when all of the
constraints are satisfied. As in the first heuristic, there may be gaps in the new schedule, so we perform a
final iteration of the tasks to reduce idle time from the resulting schedule. The computational complexity of
Heuristic B is O(|τ |2).

VI. Empirical Analysis

In this section, we validate the performance of our incremental scheduling heuristics on a synthetic data
set, as shown in Figures 1, 2, 3. Results were generated in MATLAB using a Macbook Pro with a 2.3
GHz Intel Core i7 and 8 GB 1600 MHz DDR3 RAM. To construct our data set, we randomly generate fifty
scheduling problems in the form presented in Section II. We use Tercio11 to perform task allocation and
sequencing each task set. Tercio’s task allocation subroutine was implemented in Java using Gurobi; the
sequencing subroutine was implemented in MATLAB. For each scheduling problem, we randomly generate
fifty additional new tasks with a given agent allocation.a The duration of the task is randomly selected
from the uniform distribution of the integers from 1 to 10, inclusive, that must be added to the schedule.
These new tasks have randomly-generated temporospatial constraints relating it to tasks in the current
schedule. We apply each incremental scheduling heuristic to incorporate the new tasks into the schedule.
We also perform a re-sequencing of all tasks using Tercio’s sequencing subroutine (i.e., the task allocation
remains the same). Full re-sequencing is slower than an incremental schedule change, but re-sequencing often
allows for improved schedule quality. We also consider a full re-scheduling using Tercio’s task allocation and
sequencing components. We allow Tercio to run for five iterations. In this analysis, we benchmark against
Tercio, which has been shown to be fast and empirically near-optimal. Our goal is to schedule large, real-
world task sets for which solving the MILP in Section II is computationally intractable.

(a) This figure shows the median schedule quality of the
four insertion heuristics, the sequencer, and Tercio as more
tasks are added to the schedule.

(b) This figure shows the schedule quality of the four inser-
tion heuristics and the sequencer normalized to the Tercio.

Figure 1: Figures 1a and 2a show the empirical performance of the four incremental scheduling heuristics.

Figure 1a shows the makespan of the incremental scheduling heuristics when adding 50 new tasks to a
schedule originally composed of 10 tasks. The data is presented as a line plot of the median makespan values
after inserting a number of tasks to the original schedule. The vertical axis represents the median makespan

aWe note that we could allow each heuristic to perform its own agent allocation by applying the heuristic once for each
possible agent assignment, which would increase computation time linearly with the number of agents.

5 of 9

American Institute of Aeronautics and Astronautics

computed by each heuristic. The horizontal axis represents the number of tasks that have been inserted.
Figure 1b shows the same data normalized to the makespan computed by Tercio. In this figure, the vertical
axis represents the percentile difference between the makespan generated by each heuristic and the makespan
from Tercio constructing a new schedule. In Figure 1a, we see that the four heuristics performed similarly,
with the Insert-and-Expand method performing the best out of all of the heuristics. However, it is evident
that Tercio’s sequencing subroutine performed about 10% better on average than all of the heuristics.

(a) This figure shows the median computation time of the
four insertion heuristics, the sequencer, and Tercio as more
tasks are added to the schedule.

(b) This figure shows the median computation time of the
four insertion heuristics and the sequencer normalized to
Tercio’s computation time.

Figure 2: Figures 1b and 2b show the empirical performance of the four incremental scheduling heuristics
normalized by Tercio’s performance.

Figure 2b shows the computation time required to evaluate the four incremental scheduling heuristics as
well as re-sequencing using Tercio’s subroutine. In this figure, we can see the added benefit of incremental
scheduling in regards to reduced computation time. With the exception of the best-slot heuristic, the
heuristics performed significantly faster than Tercio re-sequencing and re-scheduling. The greedy and sorted
insertion heuristic performed 91% ± 1% faster than Tercio re-scheduling and 11% ± 2% faster than Tercio
re-sequencing. The insert-and-expand heuristic performed comparatively well by being 2.5% slower than
the greedy insert. The best-slot heuristic performed comparatively poorly and inconsistently. As shown in
Figure 2b, the best-slot heuristic was slower than the Tercio re-sequencing. Furthermore, the computation
time was very inconsistent. We suspect the reason for this variation is that the computational complexity
of this heuristic is highly contingent on the dependencies of the new task into the schedule. For example,
the best-slot heuristic will perform slower on a new task with many ancestors than on a new task with very
little ancestors.

6 of 9

American Institute of Aeronautics and Astronautics

(a) This figure shows how much the schedule changes by
inserting a new task.

(b) This figure shows how much the agent allocation
changes by inserting a new task.

Figure 3: Figures 3a and 3b show the stability of the four incremental scheduling heuristics.

In Figure 3, we analyze the stability of the heuristic methods used. This metric is important because
in dynamic systems where humans and robots are involved in executing the schedule, we would prefer
dynamic changes to the schedule to vary little to decrease the cost of context switching. Otherwise, human
workers may be unnecessarily burdened if they are repetitively assigned a new job. We measure stability
by calculating the overall change in the schedule in regards to the sequence of tasks being executed and
the change in agent allocation. Figure 3a shows how much the sequence of tasks changes as a new task in
inserted into the schedule. The vertical axis represents the number of task pairs (τi, τj) such that sτi ≤ sτj
in the previously computed schedule but sτi > sτj after a new task has been inserted. The horizontal axis
represents the number of tasks that have been inserted into the original schedule. It is evident in Figure
3a that Tercio re-scheduling drastically affects the sequence of the schedule. On the other hand, the insert-
and-expand heuristic, as well as Tercio re-sequencing, generates very little changes to the sequence as new
tasks are added. Figure 3b shows the change in agent allocation as new tasks are added. The vertical axis
represents the number of tasks that were assigned a different agent from the previously computed schedule.
Since the heuristics and the re-sequencing do not perform its own agent allocation, they are represented by
a flat line at the bottom of this figure. However, we can see that Tercio re-scheduling consistently changes
the agent allocation.

Figure 4: This figure shows the the computation time increases with makespan for each insertion method.

7 of 9

American Institute of Aeronautics and Astronautics

Figure 4 shows the computation time of each insertion method with respect to the calculated makespan of
the schedule. In this figure we can see the tradeoff of running the different methods as an insertion technique.
On one extreme, Tercio re-scheduling calculates a schedule with a relatively small makespan; however, the
computation time is much longer than that of any of the other heuristics. On the other hand, heuristics A,B,
and D perform much faster than any other method but they generate schedules with the largest makespan.

The trade-off between incremental scheduling and constructing a new schedule is an interesting area of
investigation.9 From our results, we see that the only heuristic that performed comparatively well against
Tercio re-sequencing is the insert-and-expand method. The rest of the heuristics, although they perform
significantly faster, computed a schedule with relatively poor schedule quality and did not exhibit a desired
amount of stability. As shown in Figure 1 the insert-and-expand did compute a schedule that was within
15% of using the Tercio sequencing subroutine on average. However, we see in Figure 2 that the insert-and-
expand performed significantly faster than Tercio. Furthermore, it exhibited comparatively similar stability
as shown in Figure 3. We were surprised by the performance of Tercio re-sequencing in terms of stability.
We expected the re-sequencing method to be significantly less stable than some of the heuristics presented;
however, this was not the case. As a result, the trade-off between using Tercio re-scheduling, re-sequencing,
and insertion heuristics becomes less clear. If computation time is an important factor to consider, then
using an insertion heuristic may be ideal. However, since an insertion heuristic normally outputs schedules of
relatively less quality, it could be advantageous to re-sequence or re-schedule after a certain number of tasks
have been inserted using an insertion heuristic. If both computation time and schedule quality are important
factors, then using Tercio re-sequencing as a task insertion method may be best. Since this method displayed
surprisingly impressive stability, we have confidence that this would perform considerably well as an insertion
method.

VII. Future Work

In this paper, we have investigated several approaches to incremental scheduling. We have adapted prior
work by Zweben et al.21 and Gallagher et al.9 to be compatible with our scheduling problem. Our results
showed that Tercio re-sequencing performed considerably better than any of the four insertion heuristics
presented in this paper. In the future, we plan to investigate smarter techniques to apply to insertion
heuristics such as applying machine learning to define features of schedules and how we can best insert a
new task into a schedule with a certain feature set.

Acknowledgments

This work was supported by the National Science Foundation (NSF) Graduate Research Fellowship
Program (GRFP) under grant number 2388357.

References

1R. Barták, T. Mller, and H. Rudov. A new approach to modeling and solving minimal perturbation problems. In
Recent Advances in Constraints: Joint ERCIM/CoLogNET International Workshop on Constraint Solving and Constraint
Logic Programming, CSCLP 20, pages 233–249. Springer, 2004.

2M. A. Becker and S. F. Smith. Mixed-initiative resource management: The amc barrel allocator. In Proceedings of the
5th International Conference on AI Planning and Scheduling, pages 32–41. The AAAI Press, 2000.

3D. Bertsimas and R. Weismantel. Optimization over Integers. Dynamic Ideas, Belmont, 2005.
4L. Brandenburg, P. Gabow, G. Steele, J. Toussaint, and B. J. Tyson. Innovation and best practices in health care

scheduling. Technical report, February 2015.
5L. Brunet, H.-L. Choi, and J. P. How. Consensus-based auction approaches for decentralized task assignment. In

Proceedings of the AIAA Guidance, Navigation, and Control Conference (GNC), Honolulu, HI, 2008.
6J. Cates. Route optimization under uncertainty for unmanned underwater vehicles. Master’s thesis, 2011.
7M. B. Dias. TraderBots: A New Paradigm for Robust and Efficient Multirobot Coordination in Dynamic Environments.

PhD thesis, Robotics Institute, Carnegie Mellon University, January 2004.
8E. Frost. Robust planning for unmanned underwater vehicles. Master’s thesis, 2013.
9A. Gallagher, T. L. Zimmerman, and S. F. Smith. Incremental scheduling to maximize quality in a dynamic environment.

In Proc. 16th International Conference on Automated Planning and Scheduling (ICAPS, pages 222–231. AAAI Press, 2006.
10M. Garey, D. Johnson, and R. Sethi. The complexity of flowshop and jobshop scheduling. Mathematics of Operations

Research, 1(2):117–129, May 1976.

8 of 9

American Institute of Aeronautics and Astronautics

11M. C. Gombolay, R. J. Wilcox, and J. A. Shah. Fast scheduling of multi-robot teams with temporospatial constrints. In
Proceedings of the Robots: Science and Systems (RSS), Berlin, Germany, June 24-28, 2013.

12J. N. Hooker. A hybrid method for planning and scheduling. Technical report, Pepper School of Business, Carnegie
Mellon University, 2004.

13E. Jones, M. Dias, and A. Stentz. Time-extended multi-robot coordination for domains with intra-path constraints.
Autonomous Robots, 30(1):41–56, 2011.

14S. M. Kehle, N. Greer, I. Rutks, and T. Wilt. Interventions to improve veterans access to care: A systematic review of
the literature. Journal of General Internal Medicine, 26(2):689–696, 2011.

15G. A. Korsah, A. Stentz, and M. B. Dias. A comprehensive taxonomy for multi-robot task allocation. The International
Journal of Robotics Research, 32(12):1495–1512, 2013.

16U. O. L. Xu. Battle management for unmanned aerial vehicles. In Proceedings of the IEEE Conference on Decision
Control, December 2003.

17S. D. Pizer and J. C. Prentice. What are the consequences of waiting for health care in the veteran population? Journal
of General Internal Medicine, 26(2):676–682, 2011.

18M. Rekik, J.-F. Cordeau, and F. Soumis. Consensus-based decentralized auctions for robust task allocation. IEEE
Transactions on Robotics, 25:912–926, 2004.

19H. E. Sakkout and M. Wallace. Probe backtrack search for minimal perturbation in dynamic scheduling. Constraints,
5(4):359–388, Oct. 2000.

20S. A. Shipman and C. A. Sinsky. Expanding primary care capacity by reducing waste and improving efficiency of care.
Health Affairs (Millwood), 32(11):1990–1997, 2013.

21M. Zweben, E. Davis, B. Daun, and M. Deale. Scheduling and rescheduling with iterative repair. Systems, Man and
Cybernetics, IEEE Transactions on, 23(6):1588–1596, Nov 1993.

9 of 9

American Institute of Aeronautics and Astronautics

	Introduction
	Formal Problem Definition
	Background
	Approximate Solution Technique
	Insertion Heuristics
	Empirical Analysis
	Future Work

