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I. MOTIVATION

Artificial agents are increasingly interacting with humans
to support them in myriad tasks [21, 29, 30]. Gradually, the
role of robots in these interactions is transitioning from that
of a passive tool for the human user to that of a proactive
collaborator. While noteworthy progress has been made in
recent years [26], achieving seamless collaboration between
robots and humans remains an active and challenging problem.

Realizing the full benefit of human-robot collaboration
hinges on the resolution of several challenges, including the
development of algorithms that enable robots to (a) model
and predict the behavior of humans, and (b) utilize these
models to make execution-time decisions. In several domains,
such as disaster response and collaborative manufacturing,
these algorithmic challenges are further exacerbated due to
the adaptive and inter-dependent nature of human and machine
behavior, and partial knowledge of the environment that the
human-robot team is operating in.

We believe that effective sharing of information between the
human and the robot is key to successful resolution of these
challenges and achievement of seamless human-robot collab-
oration. This belief is founded in prior research on human
teams [6, 8, 10] and human-machine teams [12, 14, 22], which
indicate that effective communication is critical to the success
of the collaboration. Thus, we are developing algorithms for
human-machine collaboration that (a) leverage communication
between humans and robots to learn models of human’s
decision-making and (b) enable robots to effectively share
information during execution of human-robot collaborative
tasks.

II. CHALLENGES FOR EFFECTIVE INFORMATION
SHARING IN HUMAN-ROBOT TEAMS

In order to motivate the problem of effective information
sharing, we consider a human-robot dyad performing a task
with a known, shared objective (Fig. 1). During task execution,
both the human and the artificial agent have autonomy over
their actions and receive observations from the environment.
The information that each agent has regarding the shared
environment and the team can differ; this might happen due
to decentralized nature of the multi-agent task, incomplete
knowledge of the environment, an inaccurate model of the
teammate’s behavior, or differences in reasoning approaches
of the agents.

Fig. 1. An abstraction for a human-machine team performing a collaborative
task in a shared environment. An (artificial or human) agent will typically have
only partial information regarding its environment and teammate. Sharing
information when it is beneficial allows agents to make more informed
decisions, and the team to improve its task performance.

In such scenarios, sharing information when it is beneficial
will allow agents to make better-informed decisions, and the
team to improve its task performance. However, commu-
nicating ineffectively may lead to adverse effects on task
performance and situation awareness, information overload
or even humans ignoring communications from the robot
altogether [4, 9, 18]. Hence, algorithms to decide when it is
beneficial for the robot to share information with its human
teammate are needed.

Decision-making for communication, however, is challeng-
ing due to a variety of reasons; including the reasons for which
communication is needed (e.g., decentralized execution, lim-
ited knowledge of the team’s environment, etc.) as well as the
need to estimate value of information during execution time
[15, 16]. Despite these challenges, human teams are capable of
achieving coordination with the help of effective information
sharing even within time-critical and safety-critical scenarios.
Successful teams have been found to exhibit anticipatory
communication strategies [6, 8, 10, 22]. This suggests that by
developing algorithms that allow machines to anticipate and
respond to communication needs of its human teammate, while
respecting the associated cost and benefit trade-off, one can
achieve effective communication in human-machine teams.
This abstract summarizes our prior and on-going work towards
this problem of effective information sharing in human-robot
teams. Here, we assume the presence of a communication
modality available to the robot (such as, [3, 17, 25, 24]) and
focus on developing algorithms for judicious utilization of
such capability in human-robot dyadic interactions.



III. DECISION MAKING FOR COMMUNICATION

In multi-agent systems research, a number of works have
aimed to design communication strategies that support agents
in communicating only when necessary, reducing communi-
cation overhead and potentially improving collaborative task
performance [33, 23, 31]. Prior decision-theoretic approaches
for generating online communication [20, 32, 2] have largely
focused on tasks modeled using extensions of DEC-POMDP
[5] that include communications [19, 11] and assume complete
knowledge of action and sensing uncertainty present in the
model. These approaches, however, do not explicitly consider
a human teammate and are particularly suited for multi-agent
settings where the associated uncertainty – namely, transition
and observation probabilities – can be quantified a priori.

For human-robot teams, in contrast, the knowledge repre-
sentation and decision making of the human and the robot
differ. In several teaming scenarios, while (both human and
artificial) agents can often achieve the desired outcome from
a chosen action in a robust fashion (e.g., through the use of
dynamic controllers), they do not have complete knowledge of
their environment. For instance, in a disaster response scenario,
the map of the team’s environment might be inaccurate.
This indicates the need of novel algorithms, which address
aforementioned challenges of human-robot collaboration, for
effective information sharing between humans and robots.

Towards this, we have developed CONTACT an algorithm
that enables robots to make execution-time communication de-
cisions during collaborative tasks [27]. CONTACT is designed
for tasks with known, shared objective wherein the model of
the team’s environment (specified by transition function) is
initially unknown but deterministic in nature. The algorithm
allows for decision-making of each agent (i.e., planner used by
each agent) to be different; however, the agents are assumed
to have common knowledge of the planning behavior, initial
state and goal state of their collaborators. In applications, this
common knowledge can be derived from prior coordination.
Briefly, the algorithm, detailed in [27], includes the following
components:

• a model representation maintained by the robot (Fig. 2);
• procedures to update the model with and without com-

munication during decentralized execution; and
• a method to generate communication decisions and trig-

ger re-planning when warranted by gauging value of
information using robot’s model representation.

By maintaining an estimate of the belief maintained by the
human collaborator, the robot can gauge the benefit of sharing
novel information during decentralized execution.

To evaluate the algorithm, we have conducted multi-agent
simulation evaluations motivated by rescue operations dur-
ing disaster response scenarios. Our communication decision-
making approach was compared against a baseline motivated
by the algorithm DEC-COMM [20], where agents do not use
local information without communicating it and communicate
only if the expected reward is higher post communication.
Through these experiments, we observed that while task

Fig. 2. A cartoon depicting the model representation for a robot performing
execution-time communication decision making. The agent maintains an
estimate of its environment, and state and plan of its (human) teammate. In
addition, the agent also maintains an estimate of the belief of its teammate.

performance was comparable for both the algorithms, teams
using CONTACT could achieve comparable performance with
over 60% reduction in the number of communications.

This behavior is indicative of effective information sharing
and suited for human-robot teams, where excessive commu-
nication is undesirable (Section II). In addition, we have
conducted human-robot teaming experiments motivated by ap-
plications in collaborative manufacturing. An Amazon Alexa
device and a template-based speech-to-text module were used
for communication between the human and the robot (a
Kuka youBot). Application of CONTACT requires a model of
decision-making for the robot’s teammate; for the experiments,
a model of rational decision-making was ascribed to the human
teammate and used to estimate her decisions. The experiments
confirmed that our approach to communication decision-
making despite making a fewer number of communications
could result in comparable task performance.

IV. LEARNING DECISION-MAKING MODELS
WITHOUT STATE SPECIFICATION

To coordinate its actions with its teammate and to gauge
the benefit of sharing information, a collaborative robot needs
to estimate the state, plan and belief of its human teammate
[7]. While in certain applications it is possible to handcraft a
model of human’s decision-making or approximate it assuming
rational behavior, more generally it is desirable that robots
learn these models from data and interaction. Prior approaches
to learning models of sequential decision-making require a
complete specification of the features that impact an agent’s
decisions [34]. A key challenge for human-robot collaboration,
however, is that the behavior of the human teammate might
depend on unknown and latent features, such as preference,
trust or behavior of robot teammate [1].

Hence, currently, we are developing human-in-the-loop in-
ference algorithms to characterize the sequential decision-
making behavior of a human – without specification of its
complete state features and reward optimization criteria –
using observations (execution traces) of human’s behavior and
the ability to query the human [28]. We posit that by learning
models that include latent features of human teammate’s
decision-making, the robot can better gauge the benefit of
sharing information and consequently improve the fluency of
collaboration [13].
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