Bayesian Inference of Linear Temporal Logic Specifications for Contrastive Explanations

Title

Bayesian Inference of Linear Temporal Logic Specifications for Contrastive Explanations

Publication Type

Year of Conference
2019

Authors

Joseph Kim
Christian Muise
Ankit Shah
Shubham Agarwal
Julie Shah
Conference Name
International Joint Conference on Artificial Intelligence (IJCAI)
Conference Location
Macau, China
Date Published
08/2019
Abstract
Temporal logics are useful for providing concise descriptions of system behavior, and have been successfully used as a language for goal definitions in task planning. Prior works on inferring temporal logic specifications have focused on “summarizing” the input dataset – i.e., finding specifications that are satisfied by all plan traces belonging to the given set. In this paper, we examine the problem of inferring specifications that describe temporal differences between two sets of plan traces. We formalize the concept of providing such contrastive explanations, then present BayesLTL – a Bayesian probabilistic model for inferring contrastive explanations as linear temporal logic (LTL) specifications. We demonstrate the robustness and scalability of our model for inferring accurate specifications from noisy data and across various benchmark planning domains.
Refereed Designation
Refereed